Dünya,Güneş,Ay ve Uzay

Konusu 'Bilim - Teknik' forumundadır ve crazy_kid tarafından 26 Mart 2011 başlatılmıştır.

  1. crazy_kid
    Offline

    crazy_kid New Member

    Mesajlar:
    7
    Aldığı Beğeni:
    1
    Ödül Puanları:
    3
    :spudnikalien: Dünya,Güneş,Ay ve Uzay

    DÜNYA


    Dünya (Yer, Yeryüzü, Acun, eski dilde Cihan ya da Arz), Güneş Sistemi'nin Güneş'e uzaklık açısından üçüncü sıradaki gezegeni. Üzerinde yaşam barındırdığı bilinen tek doğal gök cismidir. Katı ya da 'kaya' ağırlıklı yapısı nedeniyle üyesi bulunduğu yer benzeri gezegenler grubuna adını vermiştir. Bu gezegen grubunun kütle ve hacim açısından en büyük üyesidir. Büyüklükte, Güneş Sistemi'nin 8 gezegeni arasında gaz devlerinin büyük farkla arkasından gelerek beşinci sıraya yerleşir. Tek doğal uydusu Ay' dır.


    Yerkürenin Oluşumu:

    Yapılan araştırmalar sonucu gezegenimizin yaşı 4,467 milyar yıl olarak hesaplanmıştır.Geçen bu zaman dilimi, karmaşık bileşik yapılar ve içerdiği elementler göze alındığında, Güneş, Dünya ve diğer gezegenler dahil Güneş Sistemi'ndeki yapıları oluşturan moleküler bulutsunun kaynağı, ömrünü önceden tamamlamış bir genç tip yıldız'ın dağılmış artıklarının ve yıldızlarası maddenin bir merkez etrafında dönerek gittikçe yoğunlaşmasıyla oluşmuştur. Merkezde yoğunlaşan çoğunlukla Hidrojen ve Helyum molekülleri yeni bir G2 türü yıldızı, yani Güneş'i oluşturmaya başlamış, çevre disklerdeki yoğunluklu bölgelerde ise gezegenler oluşmaya başlamıştır. Dünyamız ise Güneş'e 3. sırada yakınlıkta bulunan karasal bir iç gezegendir.

    Oluşum diskleri süreci ve sonrasında bu karasal gezegenler ağır göktaşı çarpışmalarına sahne olmuştur. Göktaşları yapısında bulunan donmuş buzlar, silikat ve metal yapılar, karaların ve okyanuslarının oluşmasını sağlamış, merkezde yoğunlaşan ağır demir ve nikel elementleri ise gezegenimizin çekirdeğini oluşturmuştur. Ağır göktaşı bombardımanı, asteroid kuşağının Jüpiter'in güçlü çekim etkisi sonucu daha kararlı hale gelmesiyle gittikçe azalmıştır. Uygun koşullar oluştuğunda gelişmeye başlayan canlı hayat sonrasında özellikle bitkiler ve yaptıkları fotosentez ile atmosfer'imizin yapısal bileşimi önemli oranda değişmiş ve oksijen oranının yükselmesine neden olmuştur.


    Dünya'nın Yaşı:

    Dünya'nın yaşı doğrudan doğruya kayaçların yaşıyla ölçülemez. Çünkü bilinen en yaşlı kayaçların bile bugün artık yeryüzünde var olmayan daha yaşlı kayaçlardan oluştuğunu biliyoruz. Bugüne kadar saptanabilen en yaşlı kayaçlar Grönland'ın batısında bulunmuştur ve 4,1 milyar yaşındadır. Demek oluyor ki Dünya'nın yaşı bundan daha fazladır.

    Bugün Dünya'nın yaşını hesaplamak için elde edilen en iyi yöntem radyoaktif elementlerin yarılanmaları sonucu başka elementlere dönüşümleridir. Örneğin radyoaktif uranyum elementinin uranyum-238 ve uranyum-235 gibi iki ayrı tipte atomu (izotop) vardır. Bu atomların ikisi de çok yavaş bir süreçle kurşun atomlarına dönüşür. Öbür uranyum izotopundan biraz daha ağır olan uranyum-238'in dönüşümüyle daha hafif bir kurşun izotopu olan kurşun-206, uranyum-234'in dönüşümüyle de biraz daha ağır bir izotop olan kurşun-207 atomları oluşur. Uranyum-235'in kurşuna dönüşme hızı uranyum-238'in dönüşme hızından altı kat daha fazladır. Bu nedenler, incelenen bir kayaçtaki kurşun-206 ve kurşun-207 atomlarının oranı kayacın yaşına bağlı olarak değişir. En yaşlı olduğu düşünülen bir kurşun minerali ile bugün okyanuslarda oluşan kurşunun izotop yapısı arasındaki fark, ancak bu iki örneğin oluşumları arasında 4,55 milyar yıllık bir zaman dilimi olmasıyla açıklanabilir. Bu süre de Dünya'nın yaşı olarak kabul edilebilir. En eski kayaçların yaşını hesaplamak için radyoaktif rubidyum elementinin stronsiyuma dönüşme süreci de temel zaman ölçeği olarak alınabilir. Bunun sonucunda dünyamızın tahminen 5.5 milyar yıllık olduğu varsayılmaktadır.

    Biçimi:

    Dünya'nın üzerindeki topografik oluşumlar ve kendi ekseni etrafındaki eksantrik hareketi nedeniyle düzgün bir geometrisi yoktur. Geoibs bir biçimdedir, fakat ekvatordaki yarıçapı kutuplardaki yarıçapından fazladır. Bu kutuplarından basık özel küresel geometrik şekil jeoit (Latince, Eski Yunanca Geo "dünya") yani "Dünya şekli" diye adlandırılır. Referans küremsinin ortalama çapı 12.742 km'dir (~40.000 km/π). Yer'in ekseni etrafında dönmesi ekvatorun dışarı doğru biraz fırlamasına neden olduğu için ekvatorun çapı, kutupları birleştiren çaptan 43 km daha uzundur. Ortalamadan en büyük sapmalar, Everest Dağı (denizden 8.848 m yüksekte) ve Mariana Çukuru dur (deniz seviyesinin 10.924 m altı). Dolayısıyla ideal bir elipsoide kıyasla Yer'in %0,17'lik toleransı vardır. Ekvatorun şişkinliği yüzünden Yer'in merkezinden en yüksek nokta aslında ekvatordadır.

    İç Yapısı:

    Yer'in içi, diğer gezegenler gibi, kimyasal olarak tabakalardan oluşur. Yer'in silikattan oluşmuş bir kabuğu, yüksek viskoziteli bir mantosu, akışkan bir dış çekirdeği ve katı halde bir iç çekirdeği vardır.Dünya'nın dış kabuğu ile bu kabuğun üzerindeki atmosfer(hava) ve hidrosfer (okyanuslar ve denizler)katmanları doğrudan gözlemle incelenebilir. Oysa Dünya'nın iç bölümlerine ulaşarak yapısını doğrudan inceleme olanağı yoktur. Dünya'nın iç yapısına ilişkin bütün bilgiler depremlerin incelenmesinden ve Dünya'nın içinde var olduğu düşünülen maddeler üzerindeki deneylerden elde edilmiştir. Yanardağların varlığına ve yerkabuğunun yüzeyindeki ısı akışı ölçümlerine dayanarak Dünya'nın iç böümlerinin çok sıcak olduğunu biliyoruz. Yerkabuğunun derinliklerine doğru indikçe kayaçların sıcaklığı her kilometrede 30 °C kadar yükselir. Böylece; kabuğun en alt katmanlarının çok daha üstünde yer alan kayaçlar kızıl kor haline dönüşür. Aslında Dünya'nın büyüklüğüne oranla yerkabuğu çok incedir. Eğer Dünya'yı bir futbol topu büyüklüğünde düşünürsek kabuğu da ancak topun üzerine yapıştırılmış bir posta pulu kalınlığındadır. Kabuğun altında kalan kayaçlar ise akkor sıcaklığına kadar ulaşır.

    Depremlerin nedeni, yerkabuğundaki bir kırıkla birbirinden ayrılan iki büyük kütlenin (levhanın) birdenbire harekete geçerek üst üste binmesi ya da uzaklaşması sonucunda yerkabuğunun şiddetle ileri geri sarsılmasıdır. Büyük bir depremde bazi titreşimler Dünya'nın öbür yüzündeki dairesel bir alanda "odaklanır". Buna karşılık bazı titreşimler çekirdeği aşıp öbür yana geçmez. Böylece Dünya'nın öbür yüzünde hiçbir titreşimin duyulmadığı halka biçiminde bir "gölge" belirir. Bu gölgenin boyutları ölçülerek çekirdeğin büyüklüğü hesaplanabilir. Ayrıca deprem titreşimlerinin yayılma hızi saptanarak içinden geçtikleri maddelerin yoğunluğu, dolayısıyla bileşimi belirlenebilir. Eritilmiş kayaçlarla yapılan laboratuvar deneyleri bu çalışmalara büyük ölçüde ışık tutar. Dünya'nın yüzeyi, kalınlığı 6 ile 70 km arasında değişen bir "kabuk" katmanıyla örtülüdür. Yerkabuğu denen bu katman daha ağır maddelerden oluşan ve 2.865 km derine inen çok kalın "manto" katmanının üzerine oturur. Mantonun bittiği yerde Dünya'nın merkezine kadar kadar 3.473 km boyunca uzanan "çekirdek" başlar. Jeologlara göre, içteki manto katmanı çok büyük kabarma harektleri sonucunda yerkabuğunu iterek birçok yerde yüzeye cıkmıştır. Ayrıca normal olarak yerkabuğunun yapısında bulunmayan bazı kayaçlar da yanardağı hareketleri nedeniyle Dünya'nın yüzeyine ulaşmıştır. Jeologlar bu verilere dayanarak mantonun üst kesimlerinin "ültrabazik" korkayaçlardan oluştuğunu ileri sürerler. Bir yanda "asit" kayaç olarak nitelenen granitin yer aldığı kayaç sınıflandırmasının öbür ucunda bulunan bu ültrabazik kayaçlar ağır demir ve magnezyum silikatlardan oluşur. Mantonun alt bölümlerinin de aynı yapıda, ama daha ağır ve yoğun olduğu sanılmaktadır. Çekirdeğin yapısındaki maddeler ise hem mantodakilerden daha ağır, hem de hiç değilse çekirdeğin dış bölümünde sıvı haldedir. Buna karşılık çekirdeğin içinin manto ve kabuk gibi katı olduğu sanılıyor. Yerçekirdeğin olağanüstü bir basınç vardır. Bilinen elementlerin çoğu böylesine büyük bir basınç altında çok yoğunlaşmış olarak bulunabilir; ama jeologların genel kanısı, bazı demirli göktaşları (meteoritler) gibi çekirdeğin de metal halindeki nikel ve demirden oluştuğudur.

    Yer Kabuğu:

    Yerkabuğu mantoya oranla daha hafif maddelerden oluşmuştur ve bu iki katman arasındaki geçiş bölgesi nerdeyse kesin bir sınır çizer. Bu geçiş bölgesi, böyle bir sınırın varlığını ilk kez saptayan Yugoslav bilim adamı Andrije Mohoroviçiç'in (1857-1936) adıyla "Mohoroviçiç süreksizliği" kısaca "M-süreksizliği" ya da "moho" olarak anılır. Bu sınırın varlığını gösteren en önemli kanıt yerkabuğundaki deprem titreşimlerinin süreksizlik bölgesinden geçip mantoya ulaştığında bir denbire hızlanmasıdır.

    Yer kabuğu okyanusların ve denizlerin altında uzandığı zaman "okyanus kabuğu" , kıtaları oluşturduğu zaman'da "kıta kabuğu" olarak adlandırılır. Okyanus kabuğunun kalınlığı 6–8 km arasındadır. Oysa ortalama kalınlığı 40 kilometreyi bulan kıta kabuğu yüksek sıradağların altında 60-70 kilometreye ulaşır.

    Okyanus kabuğu üç katmandan oluşur. En alt katman, yerin derinlerindeki erimiş maddelerin (magmanın) katılaşmasıyla oluşan korkayaçlardır. Orta katman yanardağ lavrarından, üst katman ise temel olarak kum ve çamur gibi tortullardan oluşur. Okyanus kabuğu sürekli hareket halindedir. Bu nedenle kabukta okyanus sırtları boyunca çatlaklar oluşur ve bu çatlakların arasından yüzeye çıkan erişmiş maddelerin sertleşmesiyle okyanus kabuğuna yeni katmanlar eklenir. Bu yeni kabuk sertleşdikten sonra yılda 1 ile 10 cm kadar ilerliyerek yavaş yavaş okyanus sırtından iki yana doğru yayılır. Böylece okyanus sırtları suyun altında yüksek sırdağlar oluşturur.

    Yerkabuğu çok sayıda eğri levhanın yan yana dizilmesiyle oluşan bir bütün olarak düşünebilir. Bu levhalar mantonun oldukça yumuşak üst katmanına oturduğu için sağa sola hareket edebilir. Okyanus sırtları, okyanus çukurları ve bazı uzun kırıklar yalnızca levhaların kenarlarında oluşur; bu kırıkların olduğu yerlerde de levhalar kayarak birbirinin üstüne binebilir. Levhalardan çoğunun üzerinde bu levhalarla birlikte hareket eden bir ya da birkaç kıta bulunur. Nitekim, bir zamanlar iki kıtaya ayıran okyanus kabuğunun çökmesiyle kıtalar bazı yerde birbirine iyice yaklaşmış, hatta üst üste binmiştir. Örneğin aralarındaki okyanus kabuğu cökmesi sonucunda Hindistan ve ile Asya kıtası çarpışmış ve iki karanın kenarları yükselerek Himalaya Dağları'nı oluşturmuştur. Büyük ve şiddetli depremlerin hemen hepsi bu levhaların kenarlarında, bir levhanın öbürünün altına girmesiyle olur. Aynı biçimde, en etkin yanardağlar da okyanus kabuğunun ya İzlanda'da olduğu gibi yükselerek sırta dönüştüğü ya da Andlar'da olduğu gibi çökerek kıtaların altına girdiği yerlerde bulunur.

    Okyanus tabanının yanlara doğru yayılarak genişlemesi çok çarpıcı bir biçimde kanıtlanmıştır. Bu kanıtlamanın en önemli dayanak noktası da Dünya'nın magnetik alanının yukarıda anlatıldığı gibi zaman zaman yön değiştirmesidir. Yerkabuğunun derinliklerindeki erimiş magma yüzeye çıkarak kristalleşirken bazı mineral parçacıkları mıknatıslanır. Böylece her biri Dünya'nın magnetik kutuplarını gösteren küçük birer mıknatısa dönüşür. Jeologlar yaşları bilinen lav katmanlarının, yapılarındaki mıknatıslanmış parçacıklar bazen kuzey, bazen güney magnetik kutbuna yönelecek biçiminde yan yana yerleştiğini saptamışlardır. Bunun nedeni, bir katmandaki mıknatıslanmış parçacıkların kuzey ve güney kutuplarının Dünya'nın magnetik kutuplarına uygun olarak dizilmesi, sonra magnetik kutuplar yön değiştirdiğinde üstteki yeni katmanda bulunan parçacıkların bir önceki katmandakilere ters yönde yerleşmesidir. Kısacası okyanus kabuğu magnetik bantlı dev bir kayıt aleti, yani bir teyp gibi Dünya'nın magnetik alanındaki bütün değisikleri bir bir kaydetmiştir.

    Levha Hareketleri:

    Levha hareket teorisi'ne (tektonik levha teorisi olarak da bilinir) göre Yer'in en dış kısmı iki tabakadan oluşur: kabuğu da kapsayan litosfer ve mantonun katılaşmış dış kısmı. Litosferin altında astenosfer bulunur, bu mantonun yüksek viskoziteli olan iç kısmıdır.

    Litosfer, astenosferin üzerinde, tektonik levhalara ayrılmış bir halde yüzmektedir. Bu plakalar belli temas noktalarında üç tür hareketten birini gösterirler: yaklaşma, uzaklaşma veya yanyana kayma. Bu temas noktalarında depremler, volkanik faaliyetler, dağ oluşumları ve okyanus dibi hendekler oluşur.

    Ana plakalar şunlardır:

    Afrika plakası, Afrika'yı kapsar.
    Antarktik plakası, Antarktika'yı kapsar
    Avustralya plakası, Avustralya'yı kapsar. (Hint plakası ile 50-555 milyon yıl önce birleşmiştir)
    Avrasya plakası, Asya ve Avrupa'yı kapsar.
    Kuzey Amerika plakası, Kuzey Amerika ve kuzey-doğu Sibirya'yı kapsar
    Güney Amerika plakası, Güney Amerika'yı kapsar.
    Büyük Okyanus plakası, Büyük Okyanus'unu kapsar
    Önemli küçük plakalar arasinda Hint plakası, Arabistan plakası, Karaip plakası, Nazka plakası, Skotia plakası ve Anadolu plakası sayılabilir.

    Aşınma:

    Kıtaları oluşturan güç, levha hareketlerinin motoru olan Yer'in iç enerji kaynağıysa, çok daha büyük bir dış enerji kaynağı, kıtaları aşındırarak yok etme sürecinde etkili olur: Güneş enerjisi. Atmosfer hareketlerini ve su döngüsünü sürdürmek için gerekli enerjiyi sağlayan güneş ışınları, su ve rüzgar aşındırması ile kıta yüzeylerinden koparılan minerallerin yine bu iki araç yardımıyla okyanus tabanlarına taşınarak çökmesine yardımcı olur. Bu mekanizma ile okyanus kabuğu üzerinde gittikçe kalınlaşarak biriken tortul kaya katmanı, dalma-batma mekanizması sırasında yerküre içlerine taşınarak yeniden erir.

    Aşınma mekanizması, suyun yerçekimi etkisi altındaki hareketlerini izler, yüksek dağların aşınarak alçalmasına, okyanus derinliklerinin dolarak yükselmesine yol açar, sonuçta yer yuvarlağının girinti ve çıkıntılarının törpülenerek çekim etkisi ile belirlenmiş ideal jeoit biçimine yaklaşması yönünde çalışır.

    Dünya'nın Hareketi:

    Dünya kendi çevresinde (23 saat 56 dakika 4,098903691 saniye)ve güneş çevresinde (365 gün, 6 saat, 48 dakika) hareket eder. Günlük ve yıllık hareketlerine bağlı olarak gece, gündüz, mevsimler, kayaçların oluşması ve diğer canlılık ve biyolojik olaylar gerçekleşir. Mevsimlerin oluşmasında etken ise 23 derecelik eksen eğikliğidir.Sürekli olarak hareket eden Dünya'nın iki çeşit hareketi vardır. Bu hareketlerden birisi kendi ekseni etrafında olur ve batıdan doğuya doğrudur. Bu dönmesini 24 saatte tamamlar. Dünya'nın kendi ekseni etrafındaki bu dönmesi ile birlikte olan ikinci hareketi ,güneş etrafındadır. Güneş etrafında Dünya, elips şeklinde çok geniş bir yörünge üzerindeki hareketini de 365 1/4 günde, yani bir yılda tamamlar. Dünya'nın kendi ekseni etrafındaki ve güneş etrafındaki bu iki hareketi, iki önemli olaya sebep verir. Kendi ekseni etrafında dönmesi ile gece ve gündüz, güneşin etrafında dönmesi ile mevsimler meydana gelir. Dünya'nın yüzeyi : Dünya'nın yüzölçümü 509.200.000 kilometrekaredir. Bunun % 70 denizler 360.600.000 kilometrekare, % 30,u karalar ,148.600.000 kilometrekare dir. Kuzey kutup çevresinde karalarla çevrilmiş bir deniz, Güney Kutup çevresinde denizlerle kuşatılmış bir kara parçası vardır.



    AY

    Ay, Dünya'nın birkaç doğal uydusundan birisi (Dünya'nın diğer uyduları), ve Güneş Sistemi içinde beşinci büyük doğal uydudur. Dünya ile Ay arasında ortalama merkezden merkeze uzaklık 384.403 km, yani Dünya'nın çapının yaklaşık otuz katı kadardır. Ay'ın çapı 3.474 km'dir,bu da Dünya çapının dörtte birinden biraz fazladır. Dolayısıyla Ay'ın hacmi Dünya'nın hacminin %2'sidir. Kütlesi Dünya kütlesinden 81,3 kat daha düşüktür. Yüzeyinde kütleçekim etkisi yerçekiminin yaklaşık %17'sidir. Ay, Dünya'nın yörüngesinde bir turunu 27,7 günde tamamlar. Dünya, Ay ve Güneş geometrisinde görülen periyodik değişimler sonucunda her 29,5 günde tekrar eden Ay'ın evreleri oluşur.

    Ay, insanların üzerine iniş yaparak yürüdükleri tek gökcismidir. Yerçekiminden kurtulup uzaya çıkan ve Ay'ın yakınından geçen ilk yapay nesne Sovyetler Birliği'nin Luna 1 uydusudur. Ay yüzeyine çarpan ilk insan yapısı nesne Luna 2 uydusudur. Normalde görünmeyen Ay'ın öteki yüzünün ilk fotoğraflarını ise Luna 3 uydusu çekmiştir. Bu üç uydu da 1959 yılında uzaya fırlatılmıştır. Ay yüzeyine ilk yumuşak iniş yapabilen uzay aracı Luna 9, ve Ay yörüngesine giren ilk insansız uzay aracı da Luna 10'dur. Bu iki uydu da 1966'da uzaya fırlatılmıştır.ABD'nin Apollo programı 1969 ve 1972 yılları arasında 6 başarılı inişle, günümüze kadar insanlı görevleri başaran tek uzay programıdır. Ay'ın doğrudan insanlar tarafından incelenmesine Apollo programının bitişiyle son verilmiştir.

    Ay Yüzeyi:

    Ay, Dünya'nın yörüngesinde eşzamanlı olarak dönmektedir, yani her zaman aynı yüzü Dünya'ya dönüktür.Ay'ın oluşumunun başlarında dönüşü yavaşladı ve Dünya'nın kütlesi nedeniyle oluşan gelgit deformasyonlarına bağlı sürtünme etkilerinin sonucu olarak günümüzdeki konumunda kitlendi.

    Çok uzun zaman önceleri Ay daha hızlı dönerken, gelgit tümseği Dünya-Ay hattının önünde dönüyordu çünkü gelgit tümsekleri yeteri kadar hızlı olarak Dünya ile aynı hatta gelemiyordu. Bu hattın dışına çıkan tümsek nedeniyle oluşan tork Ay'ın dönüşünü yavaşlattı. Ay'ın dönüşü yörünge hızına denk gelecek kadar yavaşladığında gelgit tümseği Dünya'nın tam karşısına geldi ve bu nedenle tork ortadan kayboldu. İşte bu nedenden ötürü Ay, Dünya yörüngesinde döndüğü hızla kendi çevresinde de döner ve Dünya'dan her zaman Ay'ın aynı yüzü görünür.

    Ay'ın göründüğü açının küçük değişimleri (Ay sallantısı) nedeniyle Ay yüzeyinin %59'u görünür.

    Ay'ın Dünya'ya karşı olan yüzünen Ay'ın görünen yüzü, diğer tarafına da Ay'ın öteki yüzü denir. Öteki yüz Ay'ın karanlık yüzü ile karıştırılmamalıdır. Ay'ın karanlık yüzü herhangi bir anda Güneş tarafından aydınlatılmayan yarıküresidir. Ayda bir kere bu yüz yeniay safhasına Ay'ın görünen yüzü olur. Ay'ın öteki yüzü ilk olarak 1959'da Sovyet uzay sondası Luna 3 tarafından fotoğraflandı. Ay'ın öteki yüzünün ayırtedici özelliklerinden biri ay denizi (Latince: (mare, çoğulu maria) adı verilen düzlüklerin hemen hemen hiç olmamasıdır.

    Ay Denizleri:

    Çıplak gözle rahatlıkla görünebilen Ay yüzeyinde bulunan karanlık ay düzlüklerine ay denizi denir. Çünkü antik dönem gökbilimcileri bunların suyla dolu olduklarını zannediyordu. Günümüzde bunların katılaşmış bazalt olduğu bilinmektedir. Bazaltı oluşturan lav, ay yüzüne göktaşları ve kuyrukluyıldızların çarpması sonucu oluşan krater düzlüklerini doldurmuş ve katılaşarak bu bazaltı oluşturmuştur (Oceanus Procellarum krater düzlüğü değildir ve bu kurala önemli bir istisna oluşturur.) Ay denizleri hemen hemen yalnızca Ay'ın görünen yüzünde bulunur. Ay'ın öteki yüzünün yalnızca %2'sinde birkaç dağılmış küçük düzlük bulunur.Ayın görünen yüzündeyse bu oran %31'dir.Bu farklılığın en akla yatkın açıklaması, Lunar Prospector uzay sondasının gamma ışını spektrometresi ile elde edilen jeokimyasal haritalarda gösterildiği üzere Ay'ın görünen yüzünde ısı üreten elementlerin daha yüksek konsantrasyonda bulunmasıdır.Kalkan tipi yanardağlar ve kubbemsidağlar görünen yüz üzerindeki Ay denizlerinde rastlanan özelliklerdir.

    Ay Dağları:

    Ay yüzeyinde görünen açık renkli bölgelere ay dağları (Latince: terrae (çoğul), terra (tekil) denir çünkü ay denizlerinden daha yüksektirler. Ay'ın görünen yüzünde, içleri bazalt ile dolu olan kraterlerin çevresinde birçok dağ sırasına rastlanır. Bunların kraterlerin çevrelerinde oluşan yükseltilerin kalıntıları olduğu düşünülmektedir.Dünya'da karşılaşılan oluşumun aksine, başlıca ay dağlarının hiçbirinin tektonik etkinlikler sonucu oluşmadığına inanılmaktadır.

    1994 yılında gerçekleştirilen Clementine görevinden alınan görsellerde Ay'ın kuzey kutbunda bulunan 73 km genişliğindeki Peary kraterinin çevresindeki dört dağlık bölgenin tüm ay günü boyunca günışığı aldığı görülmüştür. Günışığının sürekli aydınlatığı bu bölgeler, Ay'ın tutulum düzlemine olan oldukça küçük eksenel eğikliği nedeniyle mümkündür. Güney kutbunda benzer bölgelere rastlanmamıştır, ancak Shackleton krateri ay gününün %80'i boyunca günışığı altındadır. Ay'ın küçük eksenel eğikliğinin bir başka sonucu da kutup bölgesinde kraterlerin dibinde sürekli gölgede kalan bölgeler olmasıdır.

    Kraterler:

    Ay'ın yüzeyinde gökcisimlerinin çarpması sonucu oluşan bir çok krater bulunur.Çapı 1 km.'den büyük yaklaşık yarım milyon krater Ay yüzeyine göktaşlarının ve kuyrukluyıldızların çarpması sonucu oluşmuştur. Kraterler hemen hemen sabit bir oranla oluştuğu için birim alanda bulunan krater sayısı yüzeyin yaşını tahmin etmek için kullanılabilir. Atmosferin, hava olaylarının ve yakın geçmişte jeolojik etkinliklerin olmaması sayesinde bu kraterler, Dünya'dakilerin aksine oldukça iyi korunmuştur.

    Ay yüzeyinin ve Güneş Sistemi'nin bilinen en büyük krateri Güney Kutbu - Aitken düzlüğüdür. Bu çarpma havzası Ay'ın öteki yüzünde Güney Kutbu ile ekvator arasında yer alır; 2240 km. çapında ve 13 km. derinliğindedir.Ay'ın görünen yüzünde başlıca kraterler Mare Imbrium, Mare Serenitatis, Mare Crisium, ve Mare Nectaris'tir.

    Regolit:

    Aykabuğunun üzerinde regolit adı verilen taş ve tozdan oluşan bir tabaka bulunur. Yüzeye çarpan gökcisimleri nedeniyle oluşan regolit eski yüzeylerde yeni yüzeylere nazaran daha kalındır. Özel olarak regolitin kalınlığının denizlerde 3-5 metre, daha eski yayla bölgelerinde ise 10-20 metre arasında değiştiği tahmin edilmektedir.[13] Çok ince toz hâlinde bulunan regolit tabakasının altında onlarca kilometre kalınlığında oldukça parçalanmış kayalardan oluşan megaregolit tabakası bulunur.

    Su Varlığı:

    Ay yüzeyine sürekli çarpan göktaşları ve kuyrukluyıldızlar nedeniyle küçük miktarlarda su büyük olasılıkla yüzeye eklenmiştir. Bu durumda günışığı suyu elementlerine yani hidrojen ve oksijen ayıracak, bunlar da Ay'ın zayıf kütleçekimi nedeniyle zamanla yüzeyden kaçacaktır. Ancak Ay'ın dönme ekseninin tutulum düzlemine yalnızca 1.5° gibi çok küçük bir eğiklik yapması nedeniyle kutuplar yakınında bulunan bazı derin kraterler hiçbir zaman doğrudan günışığı almadığından ve sürekli gölgede kaldığından buraya düşen su molekülleri uzun zaman süreleri boyunca kararlılığını koruyacak.

    Clementine görevi güney kutbunda gölgede kalmış böyle kraterleri haritalandırdı,ve bilgisayar simülasyonları yaklaşık 14.000 km² kadar bir bölgenin sürekli gölgede kaldığını göstermektedir.Clementine görevinin bistatik radar deneyi küçük donmuş su ceplerine işaret eder ve Lunar Prospector görevinden gelen bilgiler kutup bölgeleri yakınlarında regolitin üst bölümlerinde aşırı derecede yüksek hidrojen konsantrasyonlarını gösterir. Toplam su buzu miktarının bir kilomete küp olduğu tahmin edilmektedir.

    Su buzu kazılarak toplanabilir ve nükleer jeneratörler ya da güneş panelleriyle donatılmış elektrik santralleri tarafından hidrojen ve oksijene ayrılabilir. Ay üzerinde kullanılabilecek miktarda su bulunması, Ay'ı yaşanılabilir kılmak için önemlidir çünkü Dünya'dan su taşımak mümkün olamayacak kadar pahalı olacaktır. Ancak son zamanlarda Arecibo gezegen radarı ile yapılan gözlemler, Clementine radarının su buzu bulunduğuna dair işaret ettiği bilgilerin aslında görece yeni kraterlerin oluşumunda fırlayan kayaların sonucu olabileceğini göstermiştir.Ay üzerinde ne kadar su bulunduğu sorusunun cevabı henüz bilinmemektedir.

    İç Yapısı:

    Ay, kabuk, manto ve çekirdek gibi jeokimyasal olarak ayrımlanabilen katmanlardan oluşur. Bu yapının yaklaşık 4,5 milyar yıl önce, Ay'ın oluşumundan hemen sonra magma okyanusunun kademeli olarak kristalleşmesiyle meydana geldiğine inanılmaktadır. Ay'ın dış yüzeyini eritmek için gerekli olan enerjinin Dünya ve Ay sistemini oluşturduğu öne sürülen dev çarpma ile elde edildiği düşünülmektedir. Bu magma okyanusunun kristalleşmesi sonucu mafik manto ve plajiyoklâz zengini kabuk ortaya çıkmış olabilir.

    Yörüngeden yapılan jeokimyasal haritalama aykabuğunun magma okyanusu varsayımı ile uyumlu bir şekilde oldukça anortositik bir yapıda olduğunu gösterir.Aykabuğu başlıca oksijen, silikon, magnezyum, demir, kalsiyum, ve aluminyum elementlerinden oluşmuştur. Jeofiziksel tekniklere dayanılarak aykabuğunun kalınlığının ortalama 50 km. civarında olduğu tahmin edilmektedir.

    Ay'ın mantosunda oluşan kısmi erime ay denizlerinde bulunan bazaltların yüzeye püskürmesine neden oldu. Bu bazaltların analizi mantonun olivin, ortopiroksen ve klinopiroksen minerallerinden oluştuğunu ve ay mantosunun dünya mantosundan demir açısından daha zengin olduğunu gösterir. Bazı ay bazaltlarında ilmenit minerali içinde karşılaşılan yüksek oranda titanyum içeriği mantonun bileşiminin oldukça yüksek oranda heterojen olduğunu gösterir. Ay yüzeyinden yaklaşık 1.000 km derinde, mantoda ay sarsıntıları olduğu bulunmuştur. Aylık periyotlarla oluşan bu sarsıntılar Ay'ın Dünya çevresinde dış merkezli yörüngede dönmesi nedeniyle oluşan gelgit streslerine bağlanmıştır.

    Ay 3.346,4 kg/m³'lik ortalama yoğunluğuyla, Güneş Sistemi'nin İo'dan sonra ikinci yoğun doğal uydusudur. Ancak bazı kanıtlar Ay çekirdeğinin yaklaşık 350 km.'lik yarıçapıyla oldukça küçük olduğuna işaret eder.Bu büyüklük Ay'ın yalnızca %20'sine denk gelir, halbuki birçok gökcisminde çekirdeğin oranı %50 civarındadır. Ay çekirdeğinin bileşimi tam olarak saptanamamıştır, ama az bir miktarda kükürt ve nikel alaşımlı metalik demirden oluştuğu sanılmaktadır. Ay'ın zamanla değişkenlik gösteren dönüşünün analizi çekirdeğin en azından kısmen erimiş olduğunu gösterir.

    Topoğrafya:

    Ay'ın topoğrafyası özellikle yakın zamanda yapılan Clementine görevinin sağladığı, lazer altimetri ve stereo görüntü analizi yöntemleriyle elde edilen data sayesinde ölçülmüştür. En çok görünen topografik özellik öteki yüzde bulunan ve Ay'ın en alçak noktalarını barındıran Güney Kutbu - Aitken düzlüğüdür. En yüksek noktalar bu düzlüğün hemen kuzeydoğusunda bulunur. Buranın Güney Kutbu - Aitken düzlüğünün oluşumuna neden olan gökcismi çarpması sonucunda yer değiştirmiş kalın katmanlar nedeniyle oluştuğu önerilmiştir. Diğer büyük kraterler Mare Imbrium, Mare Serenitatis, Mare Crisium, Mare Smythii, ve Mare Orientale 'de de oldukça alçak noktalar ve çevrelerinde yüksek noktalar bulunur. Ay şeklinin dikkat çekici bir noktası da ortalama yüksekliklerin öteki yüzde, görünen yüze göre 1,9 km daha yüksek olmasıdır.

    Kütleçekim Alanı:

    Ay'ın kütleçekim alanı, yörüngedeki uzay araçlarının yaydığı radyo dalgalarının izlenmesi sonucu belirlenmiştir. Kullanılan prensip Doppler Etkisi'ne bağlıdır. Uzay aracının bakış açısı yönündeki ivmesi radyo dalgalarının yönünü azar azar değiştirerek ve uzay aracından Dünya üzerindeki sabit bir noktaya olan uzaklığı kullanarak belirlenir. Ancak Ay'ın eşzamanlı dönmesi nedeniyle, uzay aracı öte taraftayken izlenemediğinden ötürü, öteki tarafın kütleçekimi alanı çok iyi belirlenememiştir.

    Ay'ın kütleçekim alanının en önemli özelliklerinden birisi dev krater düzlükleri ile bağlantılı olan geniş pozitif kütleçekimsel anomalilerin varlığıdır.Bu anomaliler uzay araçlarının yörüngesini önemli ölçüde etkiler bu nedenle insanlı ya da insansız uçuşların planlanmasında Ay'ın doğru kütleçekimsel modeli gereklidir. Kütleçekimsel yoğunluğun olduğu bölgelerin nedeni kısmen, krater düzlüklerini dolduran yoğun bazaltı oluşturan lava akışının varlığına bağlıdır. Ancak bu lava akışları tek başına kütleçekimsel izin tamamını açıklayamaz, aykabuğu ile manto arasındaki etkileşime de gerek vardır. Lunar Prospector 'un kütleçekimsel modellemeleri bazaltik volkanların etkisi nedeniyle oluşmadığı sanılan bazı kütleçekimsel yoğunlukların varlığını gösterir.Oceanus Procellarumda devasa volkan kaynaklı bazaltlar bulunmasına rağmen kütleçekimsel anomali gözlemlenmemektedir.

    Manyetik Alanı:

    Ay'ın dış manyetik alanı bir ile yüz nanotesla arasındadır yani 30-60 mikrotesla büyüklüğündeki Dünya'nın manyetik alanından yüz kat daha küçüktür. Diğer önemli farklılıklar çekirdeğindeki jeodinamo tarafından üretilmiş bir dipolar manyetik alnı yoktur ve varolan manyetik alanların kaynağı tamamen aykabuğudur.Bir varsayıma göre aykabuğundaki manyetikleşmelerin Ay daha gençken ve çekirdeğinde bir jeodinamo bulunurken oluştuğudur. Ancak ay çekirdeğinin küçüklüğü bu varsayımın doğruluğu karşısında bir engel oluşturmaktadır. Alternatif varsayımlar arasında, Ay gibi havası olmayan gökcisimlerinde süreksiz manyetik alanlar büyük gök cisimlerinin çarpması bulunur. Bu varsayımı destekleyecek şekilde en geniş aykabuğu manyetikleşmelerinin dev kraterlerin tam karşısında Ay yüzeyinde gerçekleştiğinin farkına varılmasıdır. Böyle bir fenomenin çarpışma sonucu oluşan plazma bulutunun ortamda bir manyetik alan bulunurken serbest olarak yayılmasından kaynaklanabileceği önerilmiştir.

    Atmosfer:

    Ay'ın atmosferi öyle incedir ki yok bile sayılabilir. Toplam atmosferik kütlesi 104 kg.'dır.Atmosferinin kaynaklarından biri aykabuğunda ve mantoda oluşan radyoaktivite sonucu ortaya çıkan radon gibi gazların salınımıdır. Diğer önemli bir kaynak ise mikrogöktaşları, güneş rüzgârı iyonları, elektronlar ve günışığının bombardımanı sonucu oluşan püskürtüm süreciyle gerçekleşir.Püskürtüm yoluyla salınan gazlar ya tekrar regolit içinde hapsolur, ya da güneş radyasyon basıncı veya iyonize olmuşlarsa güneş rüzgârının manyetik alanı nedeniyle uzaya kaçar. Dünya üzerinden yapılan spektroskopik yöntemlerle sodyum (Na) ve potasyum (K) gibi elementlerin varlığı tespit edilmiştir. Radon–222 (222Rn) ve Polonyum-210 (210Po) gibi elementler ise Lunar Prospector 'un alfa parçacık spektrometresi ile tespit edilmiştir.[27] Argon–40 (40Ar), helyum-4
    (4He), oksijen (O2) ve/veya metan (CH4), nitrojen (N2) ve/veya karbon monoksit (CO), ve karbon dioksit (CO2) Apollo astronotları tarafından yerleştirilen detektörler tarafından tespit edilmiştir.

    Yüzey Sıcaklığı:

    Ay günü boyunca yüzey sıcaklığı ortalama 107 °C, ay gecesi boyunca da ortalama -153 °C civarındadır.

    Oluşumu:

    Ay'ın oluşumunu açıklayan çeşitli varsayımlar önerilmiştir. Ay'ın Güneş Sistemi'nin oluşumundan 30-50 milyon yıl sonra, günümüzden 4,527 ± 0.010 milyar yıl önce oluştuğuna inanılmaktadır.

    Bölünme kuramı - Ay'ın oluşumu hakkında ilk düşünceler Ay'ın merkezkaç kuvvetler nedeniyle yerkabuğundan koparak ayrıldığı ve gerisinde Büyük Okyanus çukurunu bıraktığını önermiştir.Bu bölünme kavramı Dünya'nın başlangıç dönüsünün çok büyük olmasını gerektirir. Ayrıca bu bölünme sonucu oluşan yörünge Dünya'nın ekvator düzlemini izlemek durumunda olacaktı ama böyle değildir.
    Yakalama kuramı - Diğerleri Ay'ın başka bir yerde oluştuğunu ve Dünya'nın yörüngesine yakalanarak girdiğini düşünmüşlerdir.Ancak bu yakalamanın gerçekleşebilmesi için gerekli olan koşulların, örneğin enerjiyi sönümleyebilmek için Dünya'nın geniş bir atmosferinin olması gibi, oluşması mümkün değildi.
    Birlikte oluşum kuramı - Birlikte oluşum varsayımı Dünya ile Ay'ın gezegen öncesi buluttan aynı zamanda ve yerde birlikte oluştuklarını önerir. Bu varsayımı göre Ay, Dünya'nın oluştuğu maddelerin çevresindeki maddelerden oluştuğu düşünülür. Bazıları bu varsayımın Ay üzerinde metalik demirin azlığını açıklayamadığı için doğru olmadığını belirtmiştir.
    Bu varsayımların önemli bir açığı Dünya ve Ay sisteminin yüksek açısal momentumunu kolayca açıklayamamalarıdır.

    Dev çarpma kuramı - Günümüzde, Dünya ve Ay sisteminin oluşumunu dev çarpma kuramının açıkladığı bilim çevrelerince geniş kabul görmüştür. Bu varsayıma göre Dünya'nın oluşumundan önce, Mars büyüklüğünde bir gökcisminin çarparak Dünya yörüngesine Ay'ı oluşturacak kadar yeterli miktarda madde saçmış olmasıdır.Gezegenlerin, küçük ya da büyük parçaların birikmesi sonucu oluştuğuna inanıldığı için bunun gibi dev çarpma olaylarının bir çok gezegeni etkilediğine inanılmaktadır. Bu çarpmayı simüle eden bilgisayar modelleri hem Dünya ve Ay sisteminin yüksek açısal momentumu ve ay çekirdeğinin küçüklüğünü açıklayabilmektedir.Bu kuram ile ilgili cevabı bulunmamış sorular arasında Dünya öncesi kütle ile buna çarpan gökcisminin göreceli boyutları ile bunlardan çıkan maddenin ne kadarının Ay'ı oluşturduğudur.

    Ay Magma Okyanusu:

    Hem dev çarpma olayı sırasında hem de bunu izleyen Dünya'nın yörüngesinde maddenin birikmesinde çok büyük miktarlarda enerji salındığı için Ay'ın önemli bir kısmının başlangıçta erimiş olduğu düşüncesi yaygındır. Ay'ın o sırada erimiş dış yüzeyine ay magma okyanusu adı verilir ve derinliğinin 500 km ile Ay'ın yarıçapı arasında değiştiği tahmin edilmektedir.

    Magma okyanusu soğudukça kısmen kristalleşti ve katmanlara ayrılarak jeokimyasal olarak ayrı olan aykabuğu ve manto oluştu. Manto olivin, klinopiroksen ve ortopiroksen minerallerinin çökelmesi sonucu meydana geldiği düşünülmektedir. Magma okyanusunun dörtte üçünün kristalleşmesi tamamlandıktan sonra düşük yoğunluğu nedeniyle anortit minerali çökelmiş ve yüzeye çıkıp aykabuğunu oluşturmuştur.


    Magma okyanusunun kristalleşen son sıvı bölümü aykabuğu ile manto arasında sıkışmıştır ve ısı üreten, birbiriyle uyumsuz elementleri kapsar. Bu jeokimyasal bileşiğe potasyum (K), soy toprak elementleri (İngilizce: rare earth elements - REE) ve fosfor (P) simgelerinden oluşan kısaltma KREEP adı verilir ve görünen yüzde Oceanus Procellarum ile Mare Imbrium'un çoğunu kapsayan küçük jeolojik bölgede toplanmış gözükmektedir.


    Jeolojik Evrimi:

    Ay'ın magma okyanusu sonrası jeolojik evrimi gökcisimlerinin çarpması ile oluşmuştur. Ay'ın jeolojik dönemleri Nectaris, Imbrium, Orientale gibi büyük kraterlerin oluşumuna neden olan çarpma olaylarına göre ayrılmıştır. Çarpma sonucu oluşan bu yapılar yukarı fırlayan maddenin oluşturduğu çoklu halkaları ile gözlemlenir. Bu halkaların çapı genellikle yüzlerce kilometreden binlerce kilometreye kadar uzanır. Her çoklu halka düzlüğünde bölgesel stratigrafik ufuğu oluşturan püskürtü katmanları ile bağlantılıdır. Yalnızca birkaç çoklu halka düzlüğü kesin olarak tarihlendirildiyse de stratigrafik katmanlar sayesinde göreceli yaşların tespitinde faydalıdır. Sürekli olarak gökcisimlerinin çarpması sonucunda regolit oluşur.

    Ay yüzeyinin oluşumunu etkileyen diğer önemli bir jeolojik süreçi ay denizlerinin oluşumunun temelindeki volkanik etkinliktir. Procellarum KREEP katmanında ısı üreten elementlerin toplanması sonucunda altında kalan mantonun ısınıp sonunda kısmen eridiği düşünülmektedir. Eriyen magmanın bir kısmı yüzeye çıkarak püskürtüldü ve Ay'ın görünen yüzünde bulunan ay denizi bazaltlarını oluşturdu.Ay'ın bu jeolojik bölgesinde bulunan bazaltların çoğu 3,0 - 3,5 milyar yıl önce Imbrian döneminde püskürtüldü. Yine de en eski tarihlenmiş örnekler 4,2 milyar yıla uzanırken en yeni püskürtüler yalnızca 1,2 milyar yıl önce oluşmuştur.

    Ay yüzeyinin zamanla değişiklik gösterip göstermediği konusunda bazı anlaşmazlıklar bulunmaktadır. Bazı gözlemciler kraterlerin ortaya çıktığını ya da ortadan kaybolduğunu ya da diğer geçici fenomenlerin oluştuğunu iddia etti. Günümüzde bu iddiaların çoğunun yanılsama olduğu ve farklı ışık koşulları, zayıf astronomik gözlem, ya da yetersiz eski çizimler nedeniyle oluştuğu düşünülmektedir. Yine de gaz çıkması gibi fenomenlerin ara sıra oluştuğu ve bunların iddia edilen geçici ay fenomenlerine sebebiyet vermiş olabileceği bilinmektedir. Geçenlerde, yaklaşık bir milyon yıl önce gazın serbest kalması nedeniyle kabaca 3 km çaplı bir bölgenin yüzey şeklinin değişmiş olabileceği önerilmiştir.

    Aytaşları:

    Aytaşları iki ana kategoride incelenir; ay denizlerinde ve ay dağlarında bulunan aytaşları. Ay dağlarında bulunan aytaşları üç takımdan oluşur: demir anortosit takım, magnezyum takımı, ve alkali takımı. Demir anortosit takımı taşlar hemen hemen tamamen anortit mineralden oluşmuştur ve ay magma okyanusu üzerinde yüzerek toplanan plajiyoklâzdan geldiğine inanılmaktadır. Radyometrik yöntemlerle demir anortositlerin yaklaşık 4,4 milyar yıl önce oluştuğu bulunmuştur.

    Magnezyum ve alkali takımı aytaşları asıl olarak mafik plütonik kayaçlardır. Tipi olarak rastlanan kayaçlar dunit, troktolit, gabbro, alkali anortosit ve nadiren de granittir. Demir anortosit takımı aytaşlarıyla karşılaştırıldıklarında bu takımın mafik minerallerinde görece daha yüksek Mg/Fe oranları bulunur. Genel olarak bu kayaçlar önceden olmuş dağlık alan aykabuğuna sonradan girmiştir ve yaklaşık 4,4-3,9 milyar yıl önce oluşmuşlardır. Bu aytaşlarında yüksek oranda KREEP bileşeni bulunur.

    Ay denizlerinde hemen hemen yalnızca bazalt bulunur. Dünya bazaltlarına benzese de çok daha fazla demir barındırırlar ve su bazlı değişim ürünleri barındırmazlar. Ayrıca çok miktarda titanyum da içerirler.

    Astronotlar yüzeydeki tozun kar gibi hissedildiğini ve yanık barut koktuğunu bildirmiştir.[41] Toz asıl olarak Ay yüzeyine çarpan göktaşları nedeniyle oluşmuş olan silikon dioksit camından (SiO2) ibarettir. Aynı zamanda kalsiyum ve magnezyum da içerir.

    Yörüngesi ve Dünya ile Olan İlişkisi:

    Ay, sabit yıldızlara göre Dünya yörüngesinde her 27,3 günde bir tam tur atar. Ancak Dünya'da kendi yörüngesinde Güneş'in çevresinde döndüğü için AY'ın evrelerinin dönüşümü için biraz daha uzun bir zaman, 29,5 gün gerekir.Diğer gezegenlerin uydularının aksine Ay Dünya'nın ekvator düzlemi üzerinde değil, tutulum düzlemi yakınlarında yörüngededir. Gezegeninin boyutlarına göre Güneş Sistemi içinde en büyük doğal uydudur. (Charon cüce gezegen Plüton'dan daha büyüktür.)

    Dünya üzerinde görülen gelgit etkilerinin çoğu Ay'ın kütleçekim alanı nedeniyle oluşmaktadır, Güneş'in etkisi çok azdır. Gelgit etkileri nedeniyle Dünya ie Ay arasındaki ortalama uzaklık her yüzyılda 3,8 m artmaktadır.Açısal momentumun korunumu nedeniyle Ay'ın yarı büyük ekseninin artmasıyla birlikte Dünya'nın dönüşü yüzyılda 0,002 saniye kadar yavaşlamaktadır.

    Dünya ve Ay sistemi bazen gezegen-uydu sistemi olarak değil de çifte gezegen sistemi olarak değerlendirilir. Bunun nedeni Ay'ın çevresinde döndüğü gezegene göre oldukça büyük olan boyutlarıdır. Ay'ın çapı Dünya'nın dörtte biri, kütlesi de 1/81'idir. Ancak sistemin ortka kütle merkezi yeryüzünün 1.700 km. yani Dünya yarıçapının dörtte biri kadar altında olması nedeniyle bu görüş bazıları tarafından eleştirilmektedir. Ay yüzeyi Dünya'nın onda birinden azdır ve Dünya'nın kara alanının yaklaşık dörtte biri kadardır.

    1997'de asteroit 3753 Cruithne'nin Dünya ile bağlantılı olağandışı bir atnalı yörünge üzerinde olduğu bulundu. Ancak gökbilimciler bu asteroiti Dünya'nın ikinci doğal uydusu olarak kabul etmemektedir çünkü yörüngesi uzun dönemde kararlı değildir.Daha sonra Cruithne ile benzer yörüngede bulunan Dünya'ya yakın üç asteroit daha bulunmuştur: (54509) 2000 PH5, (85770) 1998 UP1 ve 2002 AA29.

    (NOT:Dünya ve Ay'ın görece boyutları ve aralarındaki uzaklık, ışığın yolculuk zamanıyla birlikte ölçekli olarak gösterilmiştir. Dünya ile Ay arasında ortalama yörünge uzaklığında ışığın yüzeyden yüzeye ulaşması için geçen süre 1,255 saniyedir. Dünya ile Ay sisteminin boyutları Güneş'e göre ışık yolculuk zamanı ile kıyaslanabilir. Güneş'in ışıkyuvarından Dünya yüzeyine ışık 8,28 dakikada ulaşır)

    Gelgit:

    Dünya üzerinde okyanuslarda görülen gelgit Ay kütleçekiminin etkisiyle oluşur. Kütleçekimsel gelgit kuvvetlerinin oluşmasının sebebi Dünya'nın Ay karşısında bulunan yüzünün merkezine ve arka yüzüne göre Ay'ın kütleçekiminden daha fazla etkilenmesidir. Kütleçekimsel gelgit, okyanusları Dünya'nın merkezinde olduğu bir elips şekline esnetir. Bunun etkisi birisi Ay'a doğru bakan yüzde, diğeri de bunun zıt yüzünde oluşan tümsek yani deniz seviyesinin yükselmesi olarak görülür. Dünya kendi ekseni etrafında dönerken bu iki tümsek de Dünya çevresinde bir günde döndüğü için okyanus suları sürekli olarak hareket eden bu iki tümseğe doğru akar. Bu iki tümseğin ve onlara doğru giden büyük okyanus akıntılarının etkisi; Dünya'nın dönüşü nedeniyle okyanus tabanlarında oluşan suyun sürtünme etkisi, su hareketinin eylemsizliği, karaya yaklaştıkça sığlaşan okyanus tabanları ve değişik okyanus tabanları arasındaki salınımlar gibi nedenlerle daha da büyür.

    Ay ile okyanuslar arasındaki kütleçekimsel bağ Ay'ın yörüngesini etkiler. Ay'dan bakıldığında gelgit tümsekleri Dünya'nın dönüşüyle ileriye doğru taşındığından doğrudan Ay'ın karşısında değildir. Kütleçekimsel eşleşme Dünya'nın dönüşünden kinetik enerji ve açısal momentumu emer. Buna karşın Ay'ın yörüngesine açısal momentum eklenir. Bu da Ay'ı daha uzun periyotlu daha yüksek bir yörüngeye iter. Bunun sonucunda da her yıl iki gökcismi arasında ki ortalama uzaklık 3,8 cm. artar.Dünya ile Ay arasındaki gelgit etkilerin önemsiz hâle gelene kadar Ay yavaş yavaş uzaklaşmaya devam edecektir, ve bu durumda yörüngesi kararlı olacaktır.

    Ay ve Güneş Tutulmaları:

    Güneş, Dünya ve Ay aynı çizgi üzerinde sıralanınca, bu durum Dünya'da Ay ve Güneş tutulması olarak gözlenir. Güneş tutulması yeni ay evresinde, Ay Güneş ile Dünya'nın arasında iken oluşur. Buna karşın Ay tutulması dolunay evresinde Dünya Güneş ile Ay'ın arasında olduğunda oluşur.

    Ay'ın yörüngesinin Dünya'nın Güneş çevresindeki yörüngesine nazaran yaklaşık 5° eğik olması nedeniyle her yeni ay ve dolunayda tutulmalar olmaz. Bir tutulmanın olması için Ay'ın her iki yörünge düzleminin kesişimine yakın bir yerde olması gerekir.

    Ay ve Güneş tutulmalarının zamanlamaları yaklaşık 6.585,3 günlük (18 yıl 11 gün 8 saat) bir periyota sahip olan ve Babilliler zamanında bulunan Saros çevrimi ile belirlenebilir.

    Ay'ın ve Güneş'in Dünya'dan görülen açısal çapları değişimlerle üstüste gelebildiği için hem tam hem de yarım güneş tutulması oluşabilmektedir.Tam güneş tutulmasında Ay Güneş diskini tamamen kapatır ve güneş koronası çıplak gözle görünür hâle gelir. Ay ile Dünya arasındaki uzaklık zamanla az da olsa arttığı için Ay'ın açısal çapı azalmaktadır. Bu yüzlerce milyon yıl önce Ay'ın tutulmalarda Güneş'in açısal çapı da değişmezse Ay artık Güneş diskini tamamen örtemeyecek ve yalnızca yarım tutulma oluşacaktır.

    Tutulma ile ilgili bir başka fenomen "örtülme"dir. Ay sürekli olarak gökyüzünde 1/2 derece genişliğinde dairesel bir alanı kaplar. Parlak bir yıldız ya da gezegen Ay'ın arkasından geçerse örtülür yani gözden kaybolur. Güneş tutulması Güneş'in örtülmesidir. Ay Dünya'ya yakın olduğu için tek tek yıldızların örtülmesi aynı zamanda ve her yerden görülemez. Ay yörüngesinin yalpalaması sonucu her yıl farklı yıldızlar örtülür.

    En son ay tutulması 20 Şubat 2008'de olan tam tutulmadır. Güney Amerika ve Kuzey Amerika'nın çoğu yerinden 20 Şubat'ta gözlemlenen tutulma Batı Avrupa, Afrika ve Batı Asya'dan 21 Şubat'ta gözlemlenmiştir. Güney Amerika ile Antarktika'nın bazı bölümlerinden gözlemlenen 1 Ağustos 2008'den sonraki güneş tutulması 15 Ocak 2010'dadır.

    Gözlemsel Bulgular:

    En parlak olduğu dolunay evresinde Ay'ın görünür kadir derecesi yaklaşık −12,6'dır. Kıyaslanacak olursa Güneş'in görünen kadir derecesi −26,8'dir. Ay'ın dördün evrelerinde parlaklığı dolunay evresindeki parlaklığının yarısı değil ancak onda biridir. Bunun nedeni Ay yüzeyinin mükemmel bir Lambert yansıtıcısı değildir. Dolunay iken gözlemcinin arkasından gelen ışık nedeniyle olduğundan parlak görünen Ay diğer evrelerde yüzeye düşen gölgeler nedeniyle yansıtılan ışığın miktarı azalır.

    Ay ufka yakınken daha büyük olarak görünür. Bu tamamen psikolojik bir etkidir. Aslında Ay ufka yakın iken gökyüzünde en yüksek olduğu konumundakinden yaklaşık 1,5 daha küçüktür.

    Ay düşük albedosuna rağmen gökyüzünde oldukça parlak bir gökcismi olarak görünür. Ay Güneş Sistemi'nde bulunan en kötü yansıtıcıdır ve üzerine düşen ışığın yalnızca %7'sini yansıtır. Bu oran bir parça kömürün yansıtma oranı ile hemen hemen aynıdır.


    Ay çevresinde görünen hâle Görsel sistemlerde renk istikrarı bir nesnenin rengiyle etrafındakilerin rengi arasındaki ilişkiyi ayarlar, dolayısıyla da görece karanlık olan gökyüzünde Güneş'in aydınlattığı Ay parlak bir nesne olarak algılanır.

    Ay'ın gün içinde ulaştığı en yüksek nokta değişiklik gösterir ve Güneş ile aynı sınırlarda dolaşır. Ayrıca Dünya üzerindeki mevsime ve Ay'ın evrelerine göre değişir. Kış mevsiminde dolunayda en yüksek noktaya ulaşır. Ayrıca 18,6 yıllık düğüm çevriminin de etkisi vardır. Ay yörüngesinin yükselen düğüm noktası ilkbahar noktasındaysa ay yükselimi 28° kadar yükselebilir. Bunun sonucunda 28 derece enlemlere kadar Ay tepe noktasına çıkar. Yaklaşık dokuz yıl kadar sonra yükselim yalnızca 18° kuzey ve güney enlemlere ulaşacaktır. Ayçanın yönü de gözlem noktasının enlemine bağlıdır. Ekvator'a yakın yerlerde bir gözlemci Ay'ı sandal gibi görebilir.

    Güneş gibi Ay'da bazı atmosferik etkilere neden olabilir. Bunların arasında 22°'lik hâle halkası ve ince bulutlar arasından görünen daha küçük korona halkaları sayılabilir.

    İlk Dönem Gözlemler:

    M.Ö. 5.yy'da Babilli gözlemcilerin Ay'ın döngülerini incelediğini, Hindistan'da benzer bulguların varlığını, Çinli Shi Shen'in M.Ö. 4.yy'da Ay ve Güneş tutulmalarının tarihlerini hesaplama yöntemi geliştirdiğini biliyoruz.

    M.Ö. 4.yy'da Aristo; yanlış da olsa uzun bir süre çok etkili olan evren açıklamasında, Ay'ın dört temel eleman (toprak, su, hava ve ateş) arasındaki sınır bölgede yer aldığını öne sürdü. Öte yandan, Seleucus ve Aristarchus (M.Ö. 2. yy.) ile Ptolemy (M.S. 90–168) Aristocu anlayışı çürüten gözlem ve hesaplamalar sundular.

    Orta Çağ Avrupası için "gökbilim"den söz etmek zordur ve dönemin bilgisi gözlemden çok dinî inanışların etkisi altındaydı. Ay'ın tam bir yuvarlak ve yüzeyinin pürüzsüz olduğu da bu inanışlar arasındaydı.

    Teleskobun keşfi ve bilimlerde yaşanan yaklaşık eşzamanlı paradigma değişimi, Ay gözleminde bir dönüm noktası olmuştur. Galileo Galilei 1609'da yayımladığı kitabı Sidereus Nuncius; Ay yüzündeki dağları ve kraterleri gösteren ilk teleskobik çizimlerden bazılarını içeriyordu. Ardından Ay'ın teleskobik haritalanması başladı: 17.yy'ın devamında Giovanni Battista Riccioli ve Francesco Maria Grimaldi; Ay'ın yüzey unsurlarını bugün adlandırırken kullanılan sistemin temellerini attılar. Wilhelm Beer ve Johann Heinrich Mädler'in kitapları Mappa Selenographica (1834-6) ve Der Mond (1837); binden fazla dağ dahil olmak üzere Ay'daki yüzey unsurlarını, yeryüzündeki coğrafya için mümkün olan hassasiyetle tanımladı.

    Öncü Keşifler Dönemi(1958-1980):

    Soğuk Savaş ile kaynaklanan Sovyetler Birliği ile ABD arasındaki uzay yarışı; Ay üzerindeki ilginin giderek artmasına neden oldu. Fırlatıcı yetenekleri izin verir vermez hem alçak uçuş hem de çarpma/iniş görevleri için insansız sondalar, uzaya gönderildi. Sovyetler Birliği'nin Luna programı Ay yüzüne insansız uzay araçları ile ulaşmayı başaran ilk program olmuştur. Yerçekimini yenip Ay'ın yanından geçmeyi başarabilen ilk insan yapımı nesne Luna 1 uzay sondası olmuştur. 1959 yılında Ay yüzüne çarpan ilk insan yapımı nesne Luna 2, ve Ay'ın öteki yüzünün fotoğraflarını çeken ilk uydu da Luna 3 olmuştur. 1966 yılında Ay yüzeyine başarılı bir yumuşak iniş yapan ilk uzay aracı Luna 9 ve Ay yörüngesine giren ilk uzay aracı da Luna 10 olmuştur.Ay yüzeyinden örnekler üç Luna uçuşu (Luna 16, Luna 20, ve Luna 24) ile Apollo 11'den Apollo 17'ye kadar (Apollo 13 hariç) Apollo görevleri ile Dünya'ya getirilmiştir.

    Ay yüzeyine 1969 yılında ilk insanların inmesi, uzay yarışının doruk noktasını oluşturmuştur.Neil Armstrong, ABD uçuşu Apollo 11'in komutanı olarak Ay'da yürüyen ilk insan oldu. Ay'da ilk adımını 21 Temmuz 1969 tarihinde saat 02:56'da (UTC) attı. 1960'ların başında özellikle yüzel erime kimyası ve atmosfere yeniden giriş konularında olduğu gibi önemli teknolojik gelişmeler; Ay yüzeyine iniş ve geri dönüşü mümkün kılmıştır.

    Apollo uçuşlarının tamamında bilimsel ölçüm aletleri, Ay yüzeyine yerleştirildi. Uzun süreli ALSEP (İngilizce: Apollo lunar surface experiment package - Apollo ay yüzeyi deney paketi) istasyonları Apollo 12, 14, 15, 16, ve 17 iniş sahalarına yerleştirildi. Apollo 11 uçuşuyla EASEP (İngilizce: Early Apollo Scientific Experiments Package - Erken Apollo bilimsel deney paketi) adı verilen geçici istasyon yerleştirilmiştir. ALSEP istasyonlarında ısı akış sondaları, sismometreler, manyetometreler, ve küp köşeli retroreflektörler bulunmaktaydı. Bütçe sorunları sebebiyle 30 Eylül 1977'de Dünya'ya bilgi iletimi kesilmiştir.Ay laser mesafe ölçüm araçları pasif ekipmanlar olduğu için hâlâ kullanılmaktadır. Dünya üzerindeki istasyonlardan yönetilen ölçümler sonucu birkaç santimetrelik hassasiyetle ay çekirdeğinin boyutları belirlenebilmektedir.

    14 Aralık 1972'de Apollo 17 uçuşunun bir parçası olarak Ay üzerinde yürüyen Eugene Cernan'dan beri başka bir insan Ay üzerinde yürümemiştir.


    20 Temmuz 1969'da ilk Ay üzerine iniş sırasında Neil Armstrong tarafından fotoğrafı çekilen astronot Buzz Aldrin.1960'ların ortasından 1970'lerin ortasına kadar Ay yüzüne ulaşan yaklaşık 65 farklı uçuş görevi yapılmıştır. Bunların sonuncusu, 1976 yılındaki Luna 24'tür. Bunları yalnızca 18'i kontrollü olarak Ay yüzeyine inmiş, dokuzu geriye dönerek ay taşı örnekleri getirmiştir. Daha sonra ise Sovyetler Birliği, Venüs ve uzay istasyonlarına ilgisini çevirirken ABD, Mars ve ötesi ile ilgilenmeye başladı.

    Yakın Dönem(1980 sonrası):

    Özellikle 1990'lardan itibaren Ay'a yönelik ilgi tekrar canlandı ve projeler arttı.

    1990 yılında Japonya Hiten uzay aracını Ay yörüngesine oturtarak bunu başaran üçüncü ülke oldu. Uzay aracı Hagormo adlı küçük bir sondayı yörüngede bıraktı ama vericinin arıza yapması nedeniyle uçuş görevinden bilimsel olarak daha fazla yararlanılamadı.

    ABD projeleri:
    1994 yılında Clementine uçuş görevini gönderen ABD tekrar Ay ile ilgilenmeye başladı. Bu görev ile birlikte Ay'ın ilk küresel topoğrafik haritası ve ay yüzeyinin ilk multispektral görselleri elde edildi. Bunu 1998 yılındaki Lunar Prospector uçuş görevi izledi. Lunar Prospector 'da bulunan nötron spektrometresi ay kutuplarında hidrojen oranının görece yüksekliğini gösterdi. Bunun nedeni olarak sürekli olarak gölge altında kalan kraterlerdeki regolitin üst birkaç metresinde su buzu var olabileceği düşünüldü.

    14 Ocak 2004'te ABD Başkanı George W. Bush 2020 yılından itibaren Ay'a insanlı uçuşların yapılmasını öngören bir plan yapılmasını istedi.

    NASA'nın Ay Arayışları (Lunar Quest) çatısı altında topladığı, Ay yörüngesinde (örneğin Haziran 2009'da fırlatılan LRC, Lunar Reconnaissance Orbiter) ve yüzeyinde (örneğin Ay'ın sürekli karanlık güney kutbunda su buzu varlığını aramayı amaçlayan LCROSS) çeşitli programları vardır.NASA, ay kutuplarından birinde kalıcı bir üssün kuruluşunu da planlamaktadır.

    Avrupa projeleri [değiştir]Avrupa uzay aracı Smart 1 27 Eylül 2003'de fırlatıldı ve 15 Kasım 2004'den 3 Eylül 2006'ya kadar Ay yörüngesinde kaldı.

    Japonya projeleri:
    Japan Aerospace Exploration Agency (Japon Uzay Araştırma Ajansı) 14 Eylül 2007'de High Definition kamera ve iki küçük uydu ile donatılmış olan SELENE adlı uzay aracını fırlattı. Uçuşun bir yıl sürmesi beklenmektedir.

    Çin projeleri:
    Çin Halk Cumhuriyeti Ay araştırmaları için istekli olduklarını Chang'e programını başlatarak gösterdi. İlk uzay aracı Chang'e-1 24 Ekim 2007'de fırlatıldı.

    Hindistan projeleri:
    Hindistan, Şubat 2008'de Chandrayaan I ve bunu takip edecek olan 2010 ya da 2011'de Chandrayaan II ile değişik insansız uçuş yapma niyetindedir. Bu ikinci uçuşta robotik bir ay aracı da planlanmaktadır. Hindistan aynı zamanda 2030 yılında Ay'a insanlı bir uçuş yapmak istediğini de belirtmiştir.
    Rusya projeleri:
    Rusya da dondurulmuş olan Luna-Glob projesine tekrar başlamayı ve 2012 'de Ay yüzeyine iniş yapmayı düşünmektedir.

    Özel Girişimler:
    13 Eylül 2007'de duyurulan Google Lunar X Prize (Google Ay X Ödülü) özel sektör tarafından finanse edilen Ay araştırmalarını artırmayı amaçlamaktadır. X Ödülü Vakfı, Ay üzerine robotik bir ay aracı gönderebilecek olan ve diğer bazı kriterlere uyacak olan herhangi bir kişiye 20 milyon dolar önermektedir.

    GÜNEŞ

    Güneş, Güneş Sistemi'nin merkezinde yer alan yıldızdır. Orta büyüklükte olan Güneş tek başına Güneş Sistemi'nin kütlesinin % 99,8'ini oluşturur. Geri kalan kütle Güneş'in çevresinde dönen gezegenler, asteroitler, göktaşları, kuyrukluyıldızlar ve kozmik tozdan oluşur. Günışığı şeklinde Güneş'ten yayılan enerji, fotosentez yoluyla Dünya üzerindeki hayatın hemen hemen tamamının var olmasını sağlar ve Dünya'nın iklimiyle hava durumunun üzerinde önemli etkilerde bulunur.

    Samanyolu gökadasında bilinen 200 milyar yıldızdan birisi olan Güneş, kütlesi sıcak gazlardan oluşan ve çevresine ısı ve ışık yayan bir yıldızdır. Güneş'in çapı dünyanın çapının 109 katı (1.5 milyon km), hacmi 1,3 milyon katı ve ağırlığı 333.000 katı kadardır. Güneşin yoğunluğu ise Dünyanın yoğunluğunun ¼’ü kadardır. Güneş kendi ekseni etrafında saatte 70.000 km hızla döner. Bir turunu ise 25 günde tamamlar. Güneşin yüzey sıcaklığı 5500 °C ve çekirdeğinin sıcaklığıysa 15,6 milyon °C’dir. Güneşten çıkan enerjinin 2 milyonda 1'i yeryüzüne ulaşır. Güneş’in üç günde yaymış olduğu enerji, dünyadaki tüm petrol, ağaç, doğalgaz, vb. yakıta eşdeğerdir. Güneş ışınları 8,44 dakikada yeryüzüne ulaşır. Güneş dünyaya en yakın yıldızdır. Çekim kuvveti dünya yer çekiminin 28 katıdır.

    Güneş yüzeyi kütlesinin %74'ünü ve hacminin %92'sini oluşturan hidrojen, kütlesinin %24-25'ünü[9] ve hacminin %7'sini oluşturan helyum ile Fe, Ni, O, Si, S, Mg, C, Ne, Ca, ve Cr gibi diğer elementlerden oluşur.Güneş'in yıldız sınıfı G2V'dir. G2 Güneş'in yüzey sıcaklığının yaklaşık 5.780 K olduğu, dolayısıyla beyaz renge sahip olduğu anlamına gelir. Günışığının atmosferden geçerken kırılması sonucu sarı gibi görünür. Bu mavi fotonların Rayleigh saçılımının sonucunda yeteri kadar mavi ışığın kırılmasıyla geride sarı olarak algılanan kırmızılığın kalmasıdır.

    Tayfı içinde iyonize ve nötr metaller olduğu kadar çok zayıf hidrojen çizgileri de bulunur. V eki (Roma rakamıyla beş) çoğu yıldız gibi Güneş'in de ana dizi üzerinde olduğunu gösterir. Enerjisini hidrojen çekirdeklerinin füzyonla helyuma dönüşmesinden elde eder ve hidrostatik denge içindedir, yani zaman içinde ne genişler ne de küçülür. Saniyede 600 milyon ton hidrojen, helyuma dönüşür. Bu da, Güneş`in her geçen saniye 4,5 milyon ton hafiflemesine yol açar. Güneşteki füzyon olayı sonucunda kızıl kırmızımsı bir alev 15-20 bin km yükselir ve Güneş Fırtınası meydana gelir. Galaksimizde 100 milyondan fazla G2 sınıfı yıldız bulunur. Güneş, galaksimiz içinde bulunan yıldızların % 85'inden daha parlaktır, bu yıldızların çoğu kırmızı cücelerdir.

    Güneş Samanyolu merkezinin çevresinde yaklaşık 26.000 ışıkyılı uzaklıkta döner. Galaktik merkez çevresinde bir dönüşünü yaklaşık 225–250 milyon yılda bir tamamlar. Yaklaşık yörünge hızı saniyede 220 kilometredir (+/-20 km/s). Bu da her 1.400 yılda bir, 1 ışıkyılı ve her 8 günde 1 GB'dir. Bu galaktik uzaklık ve hız bilgileri şu anda sahip olduğumuz en doğru bilgilerdir ancak daha fazla öğrendikçe bunlar da gelişebilir.

    Güneş günümüzde Samanyolu'nun daha büyük olan Kahraman takımyıldızı ve Yay takımyıldızı kolları arasında kalan Orion Kolu'nun iç kısmında, Yerel Yıldızlararası Bulut içinde yüksek sıcaklıkta dağınık gaz bölgesi olan düşük yoğunluklu Yerel Kabarcık içinden geçmektedir. Dünya'ya 17 ışıkyılı uzaklıkta yer alan en yakın 50 yıldız içinde Güneş, mutlak kadir olarak dördüncü sıradadır (M=4,83)

    Yaşam Çevrimi:

    Güneş'in yıldız gelişimi bilgisayar modellemesi ve nükleokozmokronoloji yöntemleri kullanılarak ana dizi üzerinde hesaplanan yaşının 4,57 milyar yıl olduğu düşünülmektedir.[13] Hidrojen moleküler bulutun hızla kendi içine çökmesi sonucu üçüncü nesil, Öbek I, T Tauri yıldızı olan Güneş'in doğduğu düşünülmektedir. Bu doğan yıldızın Samanyolu gökadasının çekirdeğinden 26.000 ışıkyılı uzakta hemen hemen dairesel bir yörüngeye girdiği varsayılmaktadır.

    Yıldız ana dizi üzerinde yıldız evrimi aşamasının yarı yolundadır. Bu aşamada çekirdekte oluşan nükleer füzyon reaksiyonları hidrojeni helyuma dönüştürür. Her saniye Güneş'in çekirdeğinde 4 milyon ton madde enerjiye çevrilir ve ortaya nötrinolarla radyasyon çıkar. Bu hızla günümüze kadar 100 Dünya kütlesi kadar madde enerjiye çevrilmiştir. Güneş yaklaşık olarak 10 milyar yıl ana dizi yıldızı olarak yaşamına devam edecektir.

    Güneş süpernova olarak patlayacak kadar fazla kütleye sahip değildir. Bunun yerine 5-6 milyar yıl içinde kırmızı dev aşamasına girecektir. Çekirdekte bulunan hidrojen yakıtı tükendikçe dış katmanları genişleyecek, çekirdeği büzüşerek ısınacaktır. Çekirdek ısısı 100 MK civarına ulaştığında helyum füzyonu tetiklenecek ve karbon ile oksijen üretmeye başlayacaktır. Böylece 7,8 milyar yıl içinde gezegen bulutsu aşamasının asimptotik dev koluna girerek iç sıcaklığında oluşan kararsızlıklar nedeniyle yüzeyinden kütle kaybetmeye başlayacaktır. Güneş'in dış katmanlarının genişleyerek Dünya'nın yörüngesinin bulunduğu noktaya kadar gelmesi olasıdır ancak son zamanlarda yapılan araştırmalar, Güneş'ten kırmızı dev aşamasının başlarında kaybolan kütle nedeniyle Dünya'nın yörüngesinin daha uzaklaşacağını, dolayısıyla da Güneş'in dış katmanları tarafından yutulmayacağını önermektedir.Ancak Dünya'nın üstündeki suyun tamamı kaynayacak ve atmosferinin çoğu uzaya kaçacaktır. Bu dönemde oluşan güneş sıcaklıklarının sonucunda 900 milyon yıl sonra Dünya yüzeyi bildiğimiz yaşamı destekleyemeyecek kadar ısınacaktır.Birkaç milyar yıl sonra da yüzeyde bulunan su tamamen yok olacaktır.

    Kırmızı dev aşamasının ardından yoğun termal titreşimler Güneş'in dış katmanlarından kurtularak bir gezegensel bulutsu oluşturmasına neden olacaktır. Geride kalan tek cisim aşırı derecede sıcak olan yıldız çekirdeği olacaktır. Bu çekirdek milyarlarca yıl boyunca yavaş yavaş soğuyup beyaz cüce olarak yok olacaktır. Bu yıldız evrimi senaryosu düşük ve orta kütleli yıldızların tipik gelişim senaryosudur.

    Yapısı:

    Güneş bir sarı cücedir. Güneş Sistemi'nin toplam kütlesinin yaklaşık % 99'unu oluşturur. Güneş hemen hemen mükemmel bir küre şeklindedir, basıklığı yalnızca 9 milyonda birdir,yani kutuplararası çapı ile ekvator çapı arasında bulunan fark yalnızca 10 km.'dir. Güneş plazma hâlindedir ve katı değildir; dolayısıyla kendi ekseni etrafında dönerken kademeli olarak döner, yani ekvatorda kutuplarda olduğundan daha hızlı döner. Bu gerçek dönüşün periyodu ekvatorda 25 gün, kutuplarda 35 gündür. Ancak Dünya Güneş'in etrafında dönerken gözlem noktamız sürekli değiştiği için Güneş'in görünür dönüşü ekvatorda yaklaşık 28 gün kadardır. Bu yavaş dönüşün merkezkaç etkisi Güneş'in ekvatorunda yüzey çekiminden 18 milyon kat daha güçsüzdür. Aynı zamanda gezegenlerden kaynaklanan gelgit etkisi Güneş'in şeklini belirgin derecede etkilemez.

    Kayalık gezegenlerde olduğu gibi Güneş'in belirli sınırları yoktur. Dış katmanlarında, merkezinden uzaklaştıkça gaz yoğunluğu üstel olarak azalır. Ancak aşağıda açıklandığı gibi Güneş'in belirgin bir iç yapısı bulunur. Güneş'in yarıçapı merkezinden ışıkyuvarının (fotosfer) kenarına kadar ölçülür. Bu hemen yukarısında gazların önemli miktarda ışık saçamayacak kadar çok soğuk ya da çok ince olduğu katmandır. Işık yuvarı çıplak gözle görülen yüzeydir. Güneş çekirdeği toplam hacminin yüzde 10'una ama toplam kütlesinin yüzde 40'ına sahiptir.

    Güneş'in içi doğrudan gözlemlenemez ve Güneş elektromanyetik ışımaya karşı opaktır. Ancak nasıl sismoloji deprem tarafından üretilen dalgaları kullanarak Dünya'nın iç yapısını ortaya çıkarıyorsa helyosismoloji de Güneş'in içinden geçen basınç dalgalarını kullanarak iç yapısını ölçmeye ve görüntülemeye çalışır. Güneş'in bilgisayar modellemesi de iç katmanları araştırmak amacıyla kuramsal bir araç olarak kullanılır.

    Çekirdek:

    Güneş çekirdeği merkezden 0,2 güneş yarıçapına kadar uzanır. Yoğunluğu 150.000 kg/m³ (Yeryüzünde suyun yoğunluğunun 150 katı) civarında, sıcaklığı da 13.600.000 kelvin kadardır (yüzey sıcaklığı yaklaşık 5.800 kelvindir). Yakın zamandaki SOHO (Solar and Heliospheric Observatory) misyonunun getirdiği bilgiler çekirdekte işınsal bölgeye doğru daha hızlı bir dönme hızı olduğunu belirtmektedir[20] Güneş'in yaşamının çoğunda enerji, proton-proton zincirleme tepkimesi diye adlandırılan aşamalardan oluşan ve hidrojeni helyuma çeviren nükleer füzyon ile oluşur. Çekirdek, füzyon ile önemli derecede ısı oluşturulan tek yerdir. Yıldızın geri kalanı çekirdekten dışarıya doğru transfer edilen enerjiyle ısınır. Çekirdekte füzyonla oluşan tüm enerji arka arkaya gelen katmanlardan geçerek güneş ışıkyuvarına ulaşır ve buradan uzaya günışığı ve parçacıkların kinetik enerjisi olarak yayılır.

    Güneş'te serbest olarak bulunan toplam ~8.9×1056 proton (hidrojen çekirdeği) her saniye 3,4×1038 kadarı helyum çekirdeğine dönüşür, saniyede 4,26 milyon ton madde-enerji dönüşüm oranıyla saniyede 383 yottawatt (3,83×1026 W) ya da 9,15×1010 megaton TNT enerji açığa çıkar. Bu aslında güneş çekirdeğinde 0,3 µW/cm³ ya da 6 µW/kg madde gibi oldukça düşük bir enerji üretimi oranına karşılık gelir. Örneğin insan vücudu yaklaşık olarak 1,2 W/kg ısı üretir, yani bu da Güneş'in birim kütle başına milyonlarca katı demektir. Dünya üzerinde benzer parametreler kullanılarak plazma ile enerji üretilmesi tamamen mantıksız olacaktır çünkü orta kapasitede 1 GW'lık bir füzyon güç santralı bir küp mil hacminde 170 milyar tonluk plazmaya ihtiyaç duyacaktır. Dolayısıyla yeryüzünde bulunan füzyon reaktörleri, Güneş'in içindekinden çok daha yüksek plazma sıcaklıkları kullanmaktadır.

    Nükleer füzyon hızı, yoğunluk ve sıcaklığa çok yakından bağlıdır, dolayısıyla çekirdekteki füzyon hızı kendi kendini düzenleyen bir dengeye sahiptir. Biraz yüksek bir füzyon hızı sonucunda çekirdek ısınarak dış katmanlara doğru hafifçe genişleyecek, füzyon hızını azaltacak ve kendini düzenleyecektir. Biraz düşük bir füzyon hızı da çekirdeğin soğumasına ve daralmasına dolayısyla da füzyon hızının artmasına neden olacaktır.

    Nükleer füzyon tepkimeleri sonucunda açığa çıkan yüksek enerjili fotonlar (kozmik, gama ve X ışınları) güneş plazmasının yalnızca birkaç milimetresi tarafında emilir ve tekrar rastgele yönlerde çok az enerji kaybederek tekrar yayılır, bu nedenle de ışımanın Güneş'in yüzeyine ulaşması uzun zaman alır. "Foton yolculuk zamanı" 10.000 ilâ 170.000 yıl kadar sürer.[21]

    Isıyayımsal dış katmandan şeffaf "yüzey" ışıkyuvara doğru son bir yolculuktan sonra fotonlar görünür ışık olarak kaçar. Güneş'in merkezinde bulunan her gama ışını uzaya kaçmadan önce birkaç milyon görünür ışık fotonuna dönüşür. Nötrinolar da çekirdekteki tepkimelerde oluşur ama fotonların aksine nadiren madde ile etkileşime girer, dolayısıyla hemen hemen hepsi Güneş'ten hemen kaçabilir. Çok uzun yıllar, Güneş'te üretilen nötrinoların ölçümü kuramlar sonucu tahmin edilenden 3 kat daha düşüktü. Bu tutarsızlık yakın zamanda nötrino salınım etkilerinin keşfiyle çözüldü. Güneş gerçekten de kuramlarca önerilen miktarda nötrinoyu açığa çıkarmakta ancak nötrino algılayıcıları bunların üçte ikisini kaçırmaktadır çünkü nötrinolar kuantum sayılarını değiştirmektedir.

    Işınsal Bölge:

    Yaklaşık 0,2 güneş yarıçapından 0,7 güneş yarıçapına kadar bulunan madde, çekirdekteki yoğun ısıyı dışarı doğru temal radyasyonla taşıyacak kadar sıcak ve yoğundur. Bu bölgede ısıyayım yoktur, yükseklik arttıkça madde soğusa da sıcaklık düşümü adyabatik sapma oranından düşük olduğu için ısıyayım oluşamaz. Isı ışınım yoluyla iletilir. Hidrojen ve helyum iyonları foton açığa çıkarır. Fotonlar diğer iyonlar tarafından emilmeden bir miktar yol alır. Bu şekilde enerji dışarı doğru çok yavaş bir hızla ilerler.

    Işınsal ile ısıyayımsal bölge arasında "tachocline" adı verilen bir geçiş katmanı bulunur. Burada ışınsal bölgenin tekdüze dönüşüyle ısıyayımsal bölgenin kademeli dönüşü arasında oluşan ani değişiklik büyük bir kırılmaya neden olur.

    Isıyayımsal Bölge:

    Güneş'in dış katmanında, yani yarıçapının % 70 aşağısına kadar olan bölgede plazma ısıyı dışarıya doğru ışıma yoluyla iletecek kadar yoğun ve sıcak değildir. Sonuç olarak sıcak sütunların yüzeye yani ışıkyuvara doğru madde taşıdığı ısıyayım oluşur. Yüzeye çıkan madde soğuyunca tekrar ısıyayımsal bölgenin başladığı yere çökerek ışınsal bölgenin üst kısmından daha fazla ısı alır.

    Isıyayımsal bölgede bulunan termal sütunlar Güneş'in yüzeyinde belirli bir iz bırakır. Güneş'in iç bölgesinin dış katmanı olan bu bölgedeki türbülanslı ısıyayım küçük ölçekli bir dinamo yaratarak Güneş'in yüzeyinin tamamında manyetik kuzey ve güney kutuplar yaratır.

    Işıkyuvar:

    Işıkyuvar, Güneş'in görünen yüzeyi, hemen altında görünen ışığa opak olduğu katmandır. Işıkyuvarın üzerinde görünen günışığı uzaya serbestçe yayılır ve enerjisi Güneş'ten uzaklaşır. Opaklıkta olan değişiklik görünen ışığı kolayca soğuran H- iyonlarının miktarlarının azalmasıdır. Buna karşın görünen ışık elektronların hidrojen atomlarıyla H- iyonu oluşturmak için tepkimeye girmesiyle oluşur.Işıkyuvar on ile yüz kilometre arasındaki kalınlığıyla Dünya üzerinde bulunan havadan daha az opaktır. Işıkyuvarın üst kısmının alt kısmından soğuk olması nedeniyle Güneş ortada kenarlara nazaran daha parlakmış gibi görünür. Güneş'in kara cisim ışınımı 6.000 K sıcaklığında olduğunu gösterir. Işıkyuvarın parçacık yoğunluğu yaklaşık 1023 m−3'dir bu da Dünya havayuvarının deniz düzeyindeki parçacık yoğunluğunun % 1'i kadardır.

    Işıkyuvarın ilk optik tayf incelemeleri sırasında bazı soğurma çizgilerinin o zamanlar Dünya üzerinde bilinen hiçbir elemente ait olmadığı anlaşıldı. 1868 yılında Norman Lockyer bunun yeni bir elemente ait olduğu varsayımını öne sürdü ve adını Yunan güneş tanrısı Helios'tan esinlenerek "helyum" koydu. Bundan ancak 25 yıl sonra helyum yeryüzünde izole edilebildi.

    Gazyuvar:

    Güneş'in ışıkyuvar üzerinde bulunan bölümlerine topluca güneş gazyuvarı denir. Radyo dalgalarından görünür ışığa ve gama ışınlarına kadar olan elektromanyetik spektrumda çalışan teleskoplarlarla görünebilir ve başlıca beş bölgeden oluşur: Sıcaklık ineci, renkyuvar, geçiş bölgesi, korona ve günyuvar. Güneş'in dış gazyuvarı sayılan günyuvar Plüton'un yörüngesinin çok ötesine gündurguna kadar uzanır. Gündurgunda yıldızlararası ortam ile şok dalgası şeklinde bir sınır oluşturur. Renkyuvar, geçiş bölgesi ve korona Güneş'in yüzeyinden daha sıcaktır. Sebebi tamamen kanıtlanmasa da kanıtlar Alfvén dalgalarının koronayı ısıtabilecek kadar enerjiye sahip olabileceğini göstermektedir.

    Güneş'in en soğuk bölgesi ışıkyuvarın yaklaşık 500 km üzerindeki sıcaklık ineci bölgesidir. Sıcaklık yaklaşık 4.000 K'dir. Bu bölge karbonmonoksit ve su gibi basit moleküllerin soğurma tayflarıyla farkedilebileceği kadar soğuktur.

    Sıcaklık ineci bölgenin hemen üzerinde 2.000 km kalınlığında, yayılım ve soğurma çizgilerinin egemen olduğu ince bir katman bulunur. Adının renkyuvar olmasının nedeni, güneş tutulmalarının başında ve sonunda bu bölgenin renkli bir ışık olarak görülmesidir. Renkyuvarın sıcaklığı yükseldikçe artar ve en üst bölgede 100.000 K'e erişir.
    Işıkyuvarın üzerinde, sıcaklığın çok hızla 100.000 K'den bir milyon K'e çıktığı geçiş bölgesi yer alır. Sıcaklık artışının nedeni bölgede bulunan helyumun yüksek sıcaklıklar nedeniyle tamamen iyonize olarak faz geçişidir. Geçiş bölgesi kesin belirli bir yükseklikte oluşmaz. Daha çok renkyuvarda bulunan iğnemsi ve ipliksi yapıların çevresinde bir ayça oluşturur ve sürekli kaotik bir hareket içindedir. Geçiş bölgesi yeryüzünden kolay görülmez ama uzaydan, elektromanyetik spektrumun morötesi bölümüne kadar hassas cihazlar tarafından kolayca gözlemlenebilir.

    Korona hacim olarak Güneş'ten çok daha büyük olan dış gazyuvarı katmanıdır. Korona tüm Güneş Sistemi'ni ve günyuvarını kaplayan güneş rüzgârına pürüzsüzce geçiş yapar. Korona'nın Güneş yüzeyine yakın olan alt katmanlarının parçacık yoğunluğu 1014–1016 m−3'dur. Sıcaklığı birkaç milyon kelvin civarındadır.

    Günyuvar ise yaklaşık 20 güneş yarıçapınden (0,1 GB) Güneş Sistemi'nin en son noktasına kadar uzanır. İç sınırlarının tanımı güneş rüzgârının süperalfvénik akışa sahip olması yani bu akışın Alfvén dalgalarının hızından daha fazla olması ile belirlenir. Bu sınırın dışındaki türbülans ya da dinamik kuvvetler Güneş koronasının şeklini etkilemez çünkü bilgi ancak Alfvén dalgalarının hızıyla yayılabilir. Güneş rüzgârı, sürekli olarak günyuvar boyunca dışa doğru akar, Güneş'ten 50 GB ötede gündurguna çarpana kadar güneş manyetik alanını spiral bir şekle sokar. Aralık 2004'te Voyager 1 uzay sondasının, gündurgun olduğuna inanılan bir şok dalgası cephesini geçtiği bildirildi. Her iki Voyager sondası da sınıra yaklaştıkça daha yüksek düzeyde enerji yüklü parçacıkların varlığını kaydetti.

    Kimyasal Bileşimi:

    Güneş, atomdan büyük her nesne gibi kimyasal elementlerden oluşmuştur. Bir çok biliminsanı bu elementlerin bolluklarını, gezegenlerdeki elementlerle olan bağlantılarını ve güneşin içindeki dağılımlarını araşırmıştır.

    Element Bollukları:

    Güneş içinde bulunan elementlerin dağılımı bir çok değişkene bağlıdır, örneğin kütleçekimi nedeniyle ağır elementler (örneğin helyum) güneş kütlesinin merkezine yakın dururken, ağır olmayan elementler (örneğin hidrojen) Güneş'in dış katmanlarına doğru yayılır.Özellikle Güneş'in içinde helyumun dağılımı özel olarak ilgi çekmektedir. Helyumun dağılma sürecinin zamanla hızlandığı ortaya çıkarılmıştır.Güneş'in dış katmanını oluşturan ışıkyuvarın bileşimi, içinde bulunan döteryum, lityum, bor ve berilyum dışında, Güneş Sistemi'nin oluşumundaki kimyasal bileşime örnek olarak alınmaktadır.

    Güneş Lekeleri ve Güneş Lekeleri Döngüsü:

    Uygun filtrelemeyle Güneş gözlemlendiğinde ilk dikkati çeken etrafına göre daha soğuk olması nedeniyle daha koyu görüken belirli sınırlara sahip güneş lekeleridir. Güneş lekeleri, güçlü manyetik kuvvetlerin ısıyayımı engellediği ve sıcak iç bölgeden yüzeye doğru enerji transferinin azaldığı yoğun manyetik etkinliğin olduğu bölgelerdir. Manyetik alan koronanın aşırı ısınmasına neden olur ve yoğun güneş püskürtüleri ile koronada kütle fırlatılmasına neden olan etkin bölgeler oluşturur.

    Güneş'in üzerinde görünür güneş lekelerinin sayısı sabit değildir ama Güneş döngüsü denen 11 yıllık bir döngü içinde değişiklik gösterir. Döngünün tipik minimum döneminde çok az güneş lekesi görünür ve hatta bazen hiç görünmez. Gözükenler yüksek enlemlerde bulunur. Güneş döngüsü ilerledikçe Spörer yasasının açıkladığı gibi güneş lekelerinin sayısı artar ve ekvatora doğru yaklaşır. Güneş lekeleri genelde zıt manyetik kutuplara sahip çiftler olarak bulunur. Ana güneş lekesinin manyetik polaritesi her güneş döngüsünde değişir, dolayısıyla bir döngüde kuzey manyetik kutba sahip olan leke bir sonraki döngüde güney manyetik kutba sahip olur.


    Son 250 yılda gözlemlenen güneş lekelerinin tarihi, ~11 yıllık güneş döngüsü görülebilmektedir.Güneş döngüsünün uzayın durumu üzerinde büyük etkisi vardır, ve Dünya'nın iklimi üzerinde de önemli bir etki yapar. Güneş etkinliğinin minimumda olduğu dönemler soğuk hava sıcaklıklarıyla, normalden daha uzun süren güneş döngüleri de daha sıcak hava sıcaklıklarıyla ilişkilendirilir. 17. yüzyılda güneş döngüsünün birkaç on yıl boyunca tamamen durduğu gözlemlenmiştir; bu dönemde çok az güneş lekesi görülmüştür. Küçük Buz Çağı ya da Maunder minimumu diye bilinen bu dönemde Avrupa'da çok soğuk hava sıcaklıklarıyla karşılaşılmıştır.Daha da önceleri benzer minimum dönemler ağaç halkalarının analiziyle ortaya konmuştur ve bu dönemler normalden daha düşük global hava sıcaklıklarıyla eşleşmektedir.

    Olası Uzun Dönem Döngüsü:

    Çok yeni bir teori Güneş'in çekirdeğindeki manyetik kararsızlıkların 41.000 ya da 100.000 yıllık periyotlarda değişikliklere sebep olduğunu öne sürmektedir. Bu kuram, buzul çağlarını Milankovitch döngülerinden daha iyi açıklayabilir. Astrofizik alanındaki bir çok kuram gibi bu da doğrudan test edilemez.

    Güneş Nötrüno Problemi:

    Uzun yıllar boyunca Dünya üzerinde tespit edilen Güneş'ten gelen nötrinoların sayısı standart Güneş modeline göre tahmin edilenin yarısı ile üçte biri arasında değişmekteydi. Bu aykırı sonuç Güneş nötrino problemi olarak bilinir. Problemi çözmek için öne sürülen kuramlar ya Güneş'in iç sıcaklığını azaltarak daha düşük bir nötrino akısını açıklamaya çalışıyordu, ya da nötrinoların Güneş'ten Dünya'ya gelirken salınıma uğradığını yani varlığı tespit edilemeyen tau ve muon nötrino parçacıklarına dönüştüğünü öneriyordu.1980'lerde nötrino akısını olabildiğince tam olarak ölçebilmek için Sudbury Nötrino Gözlemevi ve Kamiokande gibi birkaç nötrino gözlemevi kuruldu. Bu gözlemevlerinden gelen sonuçlar sonunda nötrinoların çok küçük durak kütlesi ("rest mass") olduğunu ve gerçekten de salındıklarını gösterdi.Hatta, 2001 yılında Sudbury Nötrino Gözlemevi doğrudan üç tip nötrinoyu da tespit etmeyi başardı ve Güneş'in toplam nötino ışıma oranının standart Güneş modeli ile uyumlu olduğunu ortaya çıkardı. Nötrino enerjisine bağlı olarak Dünya'da görünen nötrinoların üçte biri elktron nötrino tipindedir. Bu oran maddede nötrino salınımını açıklayan, madde etkisi de diye bilinen Mikheyev-Smirnov-Wolfenstein (MSW) etkisi ile tahmin edilen oranla uyumludur. Dolayısıyla problem artık çözülmüştür.

    Korona Isınma Problemi:

    Güneş'in optik yüzeyi ışıkyuvar yaklaşık 6.000 K'lik bir sıcaklığa sahiptir. Bunun üzerinde 1.000.000 K'lik güneş koronası bulunur. Koronanın bu aşırı yüksek sıcaklığı, ışıkyuvardan doğrudan ısı iletimi dışında başka bir kaynaktan ısıtıldığını gösterir.

    Koronayı ısıtmak için gerekli olan enerjinin ışıkyuvarın altında bulunan ısıyayımsal bölgedeki türbülanslı hareketten kaynaklandığı düşünülmüş ve koronanın nasıl ısındığına dair iki ana işleyiş önerilmiştir. Bunlardan birincisi dalga ısınmasıdır. Isıyayımsal bölgedeki türbülanslı hareket ses, kütleçekim ve manyetohidrodinamik dalgalar üretir. Bu dalgalar yukarı doğru hareket eder ve koronada dağılarak enerjilerini ortamdaki gaza ısı olarak verir. İkincisi ise manyetik ısınmadır. Işıkyuvarında hareketin sürekli olarak oluşturduğu manyetik enerji güneş püskürtüsü gibi büyük ve buna benzer bir çok küçük olayla yayılır.

    Şu anda dalgaların etkin bir ısı yayma işleyişi olup olmadığı çok açık değildir. Alfvén dalgaları dışında tüm dalgaların koronaya ulaşmadan önce dağıldıkları ortaya çıkarılmıştır.Alfvén dalgaları da korona da kolayca dağılmamaktadır. Günümüzde araştırma daha çok püskürtü yolu ile ısınma işleyişine doğru yönelmiştir. Korona ısınmasını açıklamak için olası bir görüş sürekli küçük ölçekli püskürtülerdir ve hâlâ araştırılmaktadır.

    Sönük Genç Güneş Problemi:

    Güneş gelişiminin kuramsal modelleri 3,8 ile 2,5 milyar yıl önce Arkeyan Devir'de Güneş'in bugünkünden 75% daha az parlak olduğunu önerir. Bu kadar zayıf bir yıldız Dünya üzerinde su varlığını destekleyemeyeceğinden hayatında gelişememesi gerekirdi. Ancak jeolojik kayıtlar Dünya'nın tarihi boyunca oldukça sabit bir sıcaklıkta kaldığını gösterir, hatta genç Dünya bugünden biraz daha sıcaktır. Biliminsanları arasında varılan görüşbirliği genç Dünyanın atmosferinde oldukça fazla miktarda sera gazlarının (karbon dioksit, metan ve/veya amonyak) bulunması nedeniyle Güneş'ten gelen az enerjiyi atmosferde hapsettikleri fazla ısıyla dengeli değildir.

    Manyetik Alan:

    Güneş içinde bulunan tüm madde yüksek sıcaklıklardan ötürü gaz ve plazma hâlindedir. Bu nedenle Güneş ekvatorda yukarı enlemlerde olduğundan daha hızlı döner. Ekvatorda dönüş hızı 25 gün iken kutuplarda 35 günde kendi etrafında döner. Bu kademeli dönüş sonucunda manyetik alan çizgilerinin zamanla kıvrılarak manyetik alan halkaları oluşturması Güneş'in yüzeyinden patlamalarla ayrılarak güneş lekeleri ve güneş püskürtüleri oluşumuna neden olur. Bu kıvrılma hareketi solar dinamonun oluşmasına ve 11 yıllık Güneş döngüsü ile Güneş'in manyetik alanının yön değiştirmesine neden olur.

    Güneş'in dönen manyetik alanının gezegenlerarası ortamda bulunan plazma üzerindeki etkisi Günyuvar akım katmanını oluşturur. Bu katman farklı yönleri gösteren manyetik alanları ayırır. Gezegenlerarası ortamda bulunan plazma aynı zamanda Dünya'nın yörüngesinde Güneş'in manyetik alanının kuvvetinden de sorumludur. Eğer uzay bir vakum olsaydı Güneş'in10−4 tesla manyetik dipol alanı uzaklığın kübüyle azalarak 10−11 tesla olacaktı. Ancak uydu gözlemleri bunun 100 kat daha fazla kuvvetli olduğunu ve 10−9 tesla civarında olduğunu göstermektedir. Manyetohidrodinamik (MHD) kuram manyetik alan içindeki iletken bir akışkanın (örneğin gezegenlerarası ortam) yine manyetik alan yaratan elektrik akımları indüklediğini söyler, dolayısıyla bir MHD dinamo gibi hareket eder.


    İlk Çağlarla Güneş:

    Gökyüzü'nde bulunan parlak bir disk olan Güneş, ufuğun üzerindeyken gün, ortada yokken de gece olur kavrayışı İnsanoğlu'nun Güneş hakkındaki en temel görüşüdür. Tarihöncesi ve antik çağ dönemi kültürlerde Güneş'in bir tanrı olduğuna ya da diğer doğaüstü olaylara neden olduğuna inanılırdı. Güney Amerika'daki İnka ve günümüz Meksika'sındaki Aztek uygarlıklarının merkezinde Güneş'e tapınma bulunmaktadır. Bir çok antik anıt Güneş ile ilgili fenomenlere göre yapılmıştır. Örneğin taş megalitler oldukça doğru bir şekilde gündönümünü işaret eder. En tanınmış megalitler Nabta Playa, Mısır, İngiltere'de Stonehenge'dedir. Meksika'da Chichén Itzá'da bulunan El Castillo piramidi, ilkbahar ve sonbahar ekinokslarında merdivenlerden yukarı yılanların çıktığını gösteren gölgeler verecek şekilde tasarlanmıştır. Sabit yıldızlara göre Güneş tutulum boyunca zodyaktan geçerek bir yıl içinde tam tur atıyormuş gibi görünür, dolayısıyla da Yunan gökbilimciler tarafından yedi gezegenden biri olarak sayılırdı. Haftanın günlerine de bu yedi gezegenin adı verilmiştir.

    Bilimsel Bakışla Güneş:

    Güneş hakkında ilk bilimsel açıklamayı yapan insanlardan birisi Yunanlı filozof Anaxagoras Güneş'in tanrı Helios'un arabası olmadığını Peloponnez'den bile büyük devasa yanan bir metal top olduğunu söylemiştir. Bu sapkın düşünceyi öğrettiği için iktidardakiler tarafından tutuklanmış ve ölüm cezasına çarptırılmıştır ancak Perikles'in araya girmesiyle daha sonra serbest bırakılmıştır. Dünya ile Güneş arasındaki uzaklığı tam olarak ilk hesaplayan insan 3. yüzyılda Eratosthenes olmuştur. Bulduğu 149 milyon km uzaklık günümüzde kabul edilen uzaklık ile aynıdır.

    Gezegenlerin Güneş'in etrafında döndüğü kuramı Yunan Samoslu Aristarchus ve Hintliler tarafından önerilmiştir. Bu görüş 16. yüzyılda Mikolaj Kopernik tarafından tekrar ele alınmıştır. 17. yüzyılın başında teleskobun bulunuşuyla güneş lekeleri Thomas Harriot, Galileo Galilei ve diğer gökbilimcileri tarafından detaylı olarak gözlemlenebilmiştir. Galileo, güneş lekelerinin Batı uygarlığında bilinen ilk gözlemlerini yapmış ve bunların Güneş ile Dünya arasında dolaşan küçük gökcisimleri olmadığını aksine Güneş'in yüzeyinde olduğunu varsaymıştır.Güneş lekeleri Han hanedanından beri gözlemlenmekte ve Çinli gökbilimciler tarafından yüzyıllardır kayıtları tutulmaktaydı. 1672'de Giovanni Cassini ve Jean Richer mars olan uzaklığı belirledi, dolayısıyla da Güneş'e olan uzaklığı hesap edebildiler. Isaac Newton bir prizma kullanarak günışığını inceledi ve ışığın birçok renkten oluştuğunu gösterdi.1800'de William Herschel güneş tayfının kırmızı bölümünün ötesinde kızılötesi ışımayı keşfetti.1800'lerde Güneş'in spektroskopik incelenmesinde ilerlemeler kaydedilmiştir. Joseph von Fraunhofer tayf üstünde soğurma çizgilerinin ilk gözlemlerini gerçekleştirmiştir. Tayf üzerindeki en kuvvetli soğurma çizgilerinin adı günümüzde Fraunhofer çizgileri olarak bilinir. Güneş'ten gelen ışığı tayfı genişletildiğinde kayıp birçok renk bulunabilir.

    Modern bilimsel dönemin başlarında Güneş enerjisinin kaynağı hâlâ bir bilmeceydi. Lord Kelvin, Güneş'in içerisinde barındırdığı ısıyı ışıyan, soğuyan sıvı bir nesne olduğunu önerdi.Kelvin ve Hermann von Helmholtz daha sonra enerji çıktısını açıklamak için Kelvin-Helmholtz işleyişini önerdi. Maalesef ortaya çıkan yaş tahmini jeolojik kanıtların önerdiği birkaç milyon yıldan çok daha az olan 20 milyon yıl kadardı. In 1890'da güneş tayfında helyumu keşfeden Joseph Norman Lockyer, Güneş'in oluşumu ve gelişimi için kuyrukluyıldızlara dayanan bir varsayım öne sürdü.

    1904 yılına kadar kanıtlanmış bir çözüm getirilemedi. Ernest Rutherford Güneş'in enerji çıktısının iç ısı kaynağıyla devam ettirilebileceğini ve bunun da radyoaktif bozulma olabileceğini önerdi.Ancak Güneş enerjisinin kaynağı hakkındaki en önemli ipucunu sağlayan kişi ünlü kütle-enerji denkliği bağıntısı E = mc² ile Albert Einstein olmuştur.

    1920'de Arthur Eddington Güneş'in çekirdeğinde bulunan basınç ve sıcaklıkların hidrojeni helyuma dönüştürecek bir nükleer füzyon tepkimesi için yeterli olduğunu, kütledeki net değişiklikten de enerji oluşacağını önermiştir. Güneş'te bulunan hidrojenin baskınlığı 1925 yılında Cecilia Payne-Gaposchkin tarafından doğrulanmıştır. Kuramsal füzyon kavramı 1930'larda astrofizikçiler Subrahmanyan Chandrasekhar ve Hans Bethe tarafından geliştirilmiştir. Hans Bethe, Güneş'in enerjisini sağlayan iki ana nükleer tepkimeyi hesaplamıştır.

    1957 yeni ufuklar açan, "Yıldızlarda Elementlerin Sentezi" başlıklı bir bilimsel makale Margaret Burbridge tarafından yayımlandı.Makale evrende bulunan elementlerin Güneş gibi yıldızların içinde sentezlendiğini kanıtlarıyla gösterdi. Bu açıklamalar günümüzde bilimin önemli ilerlemelerinden biri olarak sayılmaktadır.

    Güneş Uzay Görevleri:

    Güneş'i gözlemlemek için tasarlanmış ilk uydular NASA'nın 1959 ile 1968 yılları arasında fırlatılan Pioneer 5, 6, 7, 8 ve 9 uzay sondalarıdır. Bu sondalar, Dünya'nınkine benzer bir uzaklıkta Güneş'in yörüngesinde kaldılar ve güneş rüzgârı ile güneş manyetik alanının ilk detaylı ölçümlerini gerçekleştirdiler. Pioneer 9 özellikle uzun bir zaman çalışır durumda kaldı ve 1987'ye kadar data göndermeye devam etti.

    1970'lerde Helios 1 uzay sondası ve Skylab Apollo Teleskobu biliminsanlarına güneş rüzgârı ve korona hakkında yeni data sağladı. ABD - Almanya ortak girişimi olan Helios 1 uzay sondası, günberi rotasında Merkür'ün yörüngesine giren bir yörüngedeydi. NASA tarafından 1973'te fırlatılan Skylab uzay istasyonunun içinde Apollo Teleskobu denen bir güneş gözlem modülü de bulunmaktaydı. Skylab Güneş geçiş bölgesinin ve koronanın morötesi ışınımının ilk zamanlamalı göslemlerini gerçekleştirdi. Buluşlar arasında koronodan kütle fırlatılması ve şimdilerde güneş rüzgârıyla yakın ilişkisi olduğu bilinen korona delikleri olmuştur.

    1980'de NASA tarafından Solar Maksimum uzay uydusu fırlatıldı. Bu uzay aracı yüksek güneş etkinliği sırasında güneş püskürtülerinde ortaya çıkan gamma ışını, X ışını ve UV ışımasını gözlemlemek için tasarlanmıştı. Ancak fırlatmadan bir iki ay sonra bir elektronik hata sonucu sonda bekleme moduna girdi ve sonraki üç yılını bu şekilde geçirdi. 1984 yılında uzay mekiği Challenger STS-41C görevi uyduyu bularak onardı. Haziran 1989'da Dünya atmosferine girene kadar Solar Maximum sondası binlerce korona görseli çekebildi.

    Japonya'nın 1991'de fırlatılan Yohkoh (Günışığı) uydusu X ışını dalgaboyunda güneş püskürtülerini gözlemledi. Sondadan gelen datalar sayesinde biliminsanları değişik tipte güneş püskürtülerini tanımlayabildiler. Ayrıca doruk etkinlik bmlgelerinden uzakta olan koronanın da eskiden düşünüldüğünün aksine daha dinamik ve etkin olduğu ortaya çıkarıldı. Yohkoh tam bir güneş döngüsünü gözlemledi ancak 2001de güneş tutulması sırasında bekleme moduna girdi ve Güneş ile olan bağlantısını yitirdi. 2005 yılında atmosfere yeniden girerken yokoldu.

    Günümüze kadar en önemli güneş uzay görevlerinden biri Avrupa Uzay Ajansı ile NASA ortak projesi olan ve 2 Aralık 1995'te fırlatılan SOHO (Solar and Heliospheric Observatory) görevidir. Başlangıcında iki yıllık bir görev için planlanan SOHO 2007 itibariyle on yılı aşkın bir süre etkinlik göstermiştir. Çok yararlı olduğunu kanıtlamasından 2008'de fırlatılacak devam görevi Solar Dynamics Observatory planlanmıştır. Dünya ile Güneş arasında Lagrange noktasına yerleştirilen SOHO fırlatıldığından beri değişik dalgaboylarında Güneş'in görüntüsünü sürekli olarak iletmektedir. Doğrudan Güneş'i gözlemleyebilmesinin yanı sıra SOHO özellikle Güneş'in yanından geçerken yanan bir çok küçük kuyrukluyıldız dahil bir çok kuyrukluyıldızın keşfine yaradı.


    Güneş'in güney kutbu. STEREO güneş gözlem misyonu tarafından çekilmiştir. Görselin sağ alt kısmında fırlatılan madde görülebilir.Tüm bu uydular Güneş'i tutulum düzlemi üzerinden gözlemlemiştir, yani yalnızca ekvator bölgelerinin detayları mevcuttur. 1990 yılında Güneş'in kutup bölgelerini incelemek için Ulysses uzay sondası fırlatıldı. Önce Jüpiter'e kadar giderek burada 'sapan' etkisinden faydalanarak tutulum düzleminin üstünde bir yörüngeye oturdu. Tesadüfen çok yakından 1994 yılında Shoemaker-Levy 9 kuyrukluyıldızının Jüpiter ile çarpışmasını izleyebildi. Ulysses planlanan yörüngesine girdikten sonra güneş rüzgârını gözlemlemeye ve yüksek enlemlerde manyetik alan kuvvetini belirlemeye başladı. Yüksek enlemlerden çıkan güneş rüzgârının beklenenden daha düşük olarak 750 km/s hızla hareket ettiğini buldu. Ayrıca yüksek enlemlerden çıkan, galaktik kozmik ışınlar saçan büyük manyetik dalgaların varlığını keşfetti.

    Işıkyuvar'da bulunan elementlerin bolluğu günışığı tayflarından çok iyi bilinmektedir ancak Güneş'in içinin bileşimi çok iyi anlaşılamamıştır. Bir güneş rüzgârı örnek getirme görevi için kullanılan Genesis uzay aracı, gökbilimcilerinin güneş maddesi bileşimini doğrudan ölçebilmesi için tasarlanmıştı. Genesis 2004 yılında Dünya'ya döndü ancak iniş sırasında paraşütlerinden biri açılmadığı için zarar gördü. Aşırı derecede zarara rağmen bazı işe yarar örnekler ele geçirildi ve analizleri devam etmektedir.

    STEREO (The Solar Terrestrial Relations Observatory) görevi Ekim 2006'da fırlatılmıştır. İki eşlenik uzay aracı Güneş'in ve koronadan kütle fırlatımı gibi olayların stereoskopik fotoğrafını çekebilecek şekilde yörüngeye sokulmuşlardır.

    Güneş Gözlemi ve Göze Gelen Zarar:

    Günışığı çok parlaktır ve çıplak gözle kısa süreler için Güneş'e bakmak acı verici olabilir ama özel olarak normal gözler için zararlı değildir.Güneş'e doğrudan bakıldığında gözde yıldız gibi parlamalar oluşur ve geçici olarak yarı körlüğe sebep olur. Aynı zamanda retinaya 4 milliwatt günışığı düşmesine, böylece retinanın hafifçe ısınarak, potansiyel olarak gözlerin zarar görmesine neden olur.UV ışınlarına maruz kalma sonucu aşamalı olarak gözün lensi yıllar sonra sararır ve katarakt oluşumuna neden olabilir.Doğrudan Güneş'e bakıldığında yaklaşık 100 dakika sonra UV kaynaklı güneş yanığı benzeri lezyonlar retina üzerinde oluşur, özellikle morötesi ışınlar yoğun ise.
    Gözler genç ise durum daha da kötüleşir, çünkü yaşlanan gözlerden daha fazla UV'den etkilenir.

    Güneş'i dürbün gibi ışığı yoğunlaştıran optik cihazlarla izlemek eğer UV ışınları filtre edecek uygun bir filtre yoksa çok zararlıdır. Filtresiz dürbünler çıplak gözün aldığından 500 kat daha fazla enerjinin retinaya gelmesini sağlayacağından retina hücrelerinin hemen ölmesine neden olur. Öğlen güneşine filtresiz dürbünle çok kısa bir süre bakmak bile kalıcı körlüğe neden olur.Güneş'i izlemenin güvenli bir yolu teleskop kullanarak görüntüsünü bir ekrana yansıtmaktır.

    Kısmi güneş tutulmalarını izlemek zararlıdır, çünkü gözbebekleri aşırı yüksek kontrasta uyumlu değildir. Gözbebeği ortamda bulunan toplam ışık miktarına göre genişler, ortamda bulunan en parlak nesneye göre değil. Kısmi tutulmalarda günışığının çoğunluğu Güneş'in önünden geçen Ay tarafından engellenir ama ışıkyuvarın örtülmemiş kısımlarının yüzey parlaklığı normal günlerdeki ile aynıdır. Ortamın loş olması nedeniyle gözbebeği ~2 mm'den ~6 mm'ye büyür, ve günışığına maruz kalan her retina hücresi tutulmayan normalin on katı ışık alacaktır. Bu gözlemcinin gözünde kalıcı kör noktalara neden olacak şekilde hücreleri öldürebilir ya da hücrelere zarar verebilir. Hemen acı oluşmadığı için tecrübesiz gözlemciler ve çocuklar bu zararın farkına varamaz, bir kişinin görüşünün bozulması hemen farkedilmez.

    Gündoğumu ve günbatımı esnasında günışığı Rayleigh saçılımı ve Mie saçılımı nedeniyle azalır. Dünya atmosferinden geçerken aldığı uzun yol nedeniyle çıplak gözle rahat bir şekilde seyredilebilecek kadar sönüktür. Pus, duman, toz ve yüksek nem ışığın azalmasına yardımcı olur.

    Güneşi izlemek için kullanılan ışık azaltıcı filtreler bu nedenle tasarlanır. Uydurularak yapılan filtreler UV ve IR ışınları geçirebilir dolayısıyla yüksek parlaklık düzeylerinde göze zararlı olabilir. Teleskoplarda kullanılan filtreler lensin ya da açıklığın üzerinde olmalı ama oküler mercekte olmamalıdır. Çünkü emilen günışığından kaynaklanan aşırı ısı bu filtrelerin aniden çatlamasına neden olabilir. 14 numaralı kaynak camı kabul edilebilir bir güneş filtresidir ama negatif siyah fotoğraf filmi değildir çünkü çok fazla kızılötesi ışını geçirir.

    UZAY

    Uzay (fezâ), dünya'nın atmosferi dışında evrenin geri kalan kısmına verilen isimdir.Ortalama ısısı -270 santigrat derecedir. Atmosfer ile uzay arasında kesin bir sınır bulunmamaktadır, fakat Dünya'nın atmosferi yukarı doğru çıkıldıkça incelmektedir. Uzayda tahminen milyonlarca galaksi bulunmaktadır. Bu tahmini galaksilerin içinde tahminen milyonlarca sistemler, gezegenler ve astroitler bulunmaktadır. Fizikçi Carl Sagan'ın kitabı "KOZMOS" da yazdığı üzerine evrensel atom sabiti 1088 kadar yani 10 üssü 88, Carl Sagan'a göre evrende tahmini 10'un yanında 88 sıfır tane atom var (on oktovigintilyon). Bu şekilde bir hesaplama ve insanoğlunun bildiği her türlü galaksi uzayın büyüklüğünü kanıtlar.

    Uzay karanlığı, büyüklüğü, olayları ile ilgi çekici, karmaşık ve araştırmaya değer olmuştur. Bu yüzden insan her çağda uzayı merak etmişti. Bu yüzden sürekli uzayı araştırmak için icatlar yapmıştı. Teleskop bu alanda çok önemli bir alettir. Çağlar geçtikçe insanların daha güçlü teleskoplarla uzayı incelemesi uzay hakkındaki bilgileri artırdı. Böylece merakını gidermeye başlayan insanoğlu bununla yetinmeyip uçarak daha fazla bilgi toplamak istedi. İnsanlığın uçmayı keşfetmesiyle Dünya'yı çevreleyen yakın uzay hakkındaki bilgiler, daha da artmaya başladı. Nihayet, güçlü füzeler, yapma uydular, Ay 'a insanlı ya da insansız araçlar gönderilmesi, yapay uydular geliştirilmesi, çok güçlü radyo teleskoplarla (bkz.Hubble Uzay Teleskobu) uzayın derinliklerinin araştırılması, 20. yüzyılın ikinci yarısında insanlığın uzay hakkındaki bilgilerini önemli ölçüde genişletti. Ayrıca insanlık uzayı araştırmak için "astronomi" bilimini doğurdu. Artık astrologlar uzayın bilgilerini daha hızlı buluyorlardı.

    Bu arada teorik fizik ve astronomi konusunda devrim yapacak görüşler ortaya atan Einstein gibi bilginlerin uzay konusunda ortaya attıkları pek çok kuram, gözlemcilerin uzay üzerine verdikleri bulguların mantıklı bir şekilde açıklanmasını sağladı.

    Uzay konusundaki ilk sağlam bilgiler, 19. yüzyıl sonu ile 20. yüzyıl başında, özellikle kuzey ülkelerinde kurulan gözlemevleri sayesinde alındı. ABD'nin Kaliforniya eyaletinde bulunan Palamar Gözlemevi, Dünya'da mevcut gözlemevlerinin en büyüğüdür. Buradaki aynalı teleskopun çapı 5 m, yüksekliği 40 metre dir.Bu gözlemevlerinde uzaydaki gökcisimlerinin kütlesi, hacmi, ışığının şiddeti vb. incelenmektedir. Uygulamalı fiziğin geliştirdiği tayf (spektrum) analizi, uzaydan gelen ışıklardan, cisimlerin hangi elementlerden oluştuğunu göstermektedir.

    1932'de K. G. Jansky adındaki bir mühendisin rastlantı sonucu bulduğu uzaydan gelen radyo yayınları, daha sonraki yıllarda radyoteleskopların doğmasına ve uzayın derinliklerinin dinlenmesine, bu radyo yayınlarının kaynaklarının ve nedenlerinin bulunmasına yol açtı. II. Dünya Savaşı sırasında Almanların geliştirdiği V-1 ve V-2 füzeleri daha sonraki yıllarda uzayın keşfi için yapılacak çalışmalarda büyük bir adım oldu. 1947-1956 yılları arasında özellikle ABD, uzay çalışmalarına büyük hız verdi. Yapılan uzay uçuşu denemelerinin hiçbiri bir uzay aracını yörüngeye oturtmayı başaramadı. Bu arada SSCB, 1957 yılında üç kademeli Vostok füzeleri ile "Sputnik" adındaki ilk yapma uyduyu Dünya çevresinde yörüngeye oturtarak uzay yarışında öne geçti. Uydulardan elde edilen uzay üzerine bilgiler, canlıların, özellikle insanların uzayda yaşayabilmeleri için hangi koşulların yerine getirilmesi gerektiğini ortaya koydu. Böylece uzay tıbbı doğdu ve gelişti. Uzayda ilk insan ise 12 Nisan 1961 tarihinde SSCB'nin uzaya gönderdiği Yuri Gagarin oldu. Bu arada, insanların uzay boşluğuna yerleşmelerini sağlamak, uzayı uzaydan izlemek, Dünya üzerinde haberleşme kolaylıkları sağlamak için binlerce uydu yörüngeye yerleştirildi ya da uzayın boşluğuna fırlatıldı. Nihayet 1969 Temmuzu'nda Ay'ın ABDli astronotlar tarafından fethedilmesi, uzay çalışmalarında en önemi adımlardan biri oldu. Günümüzde uzay yarışı büyük bir hızla sürmektedir.Özellikle de Amerika ve Rusya bu büyük yarışta amansız birer rakiptir.

    Uzay Hakkındaki bir başka teorem ise 2009'da öne sürülmüştür. Buna göre Uzay tahmin edilenden daha küçük olabilir. Galaksi sayısı ise tahmin edilenden çok daha azdır. Görünen uzayda görülen galaksilerin ve yıldızların pek çoğu aynı galaksilerin farklı zamanlardaki görüntüleridir. Işık uzayda doğrusal ilerlemez, evrensel çekim güçlerinin belirlediği yolu takip eder, kim bilir yeterince uzun süre uzayı gözlemlersek belki bir gün kendimizi bile görebiliriz..
    Last edited: 26 Mart 2011

Sayfayı Paylaş